4 resultados para Gradient descent algorithms

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models that implement the bio-physical components of agro-ecosystems are ideally suited for exploring sustainability issues in cropping systems. Sustainability may be represented as a number of objectives to be maximised or minimised. However, the full decision space of these objectives is usually very large and simplifications are necessary to safeguard computational feasibility. Different optimisation approaches have been proposed in the literature, usually based on mathematical programming techniques. Here, we present a search approach based on a multiobjective evaluation technique within an evolutionary algorithm (EA), linked to the APSIM cropping systems model. A simple case study addressing crop choice and sowing rules in North-East Australian cropping systems is used to illustrate the methodology. Sustainability of these systems is evaluated in terms of economic performance and resource use. Due to the limited size of this sample problem, the quality of the EA optimisation can be assessed by comparison to the full problem domain. Results demonstrate that the EA procedure, parameterised with generic parameters from the literature, converges to a useable solution set within a reasonable amount of time. Frontier ‘‘peels’’ or Pareto-optimal solutions as described by the multiobjective evaluation procedure provide useful information for discussion on trade-offs between conflicting objectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common explanation for species diversity increasing towards the tropics is the corresponding increase in habitats (spatial heterogeneity). Consequently, a monoculture (like cotton in Australia) which is grown along a latitudinal gradient, should have the same degree of species diversity throughout its range. We tested to see if diversity in a dominant cotton community (spiders) changed with latitude, and if the community was structurally identical in different parts of Australia. We sampled seven sites extending over 20 degrees of latitude. At each site we sampled 1-3 fields 3-5 times during the cotton growing season using pitfall traps and beatsheets, recording all the spiders collected to family. We found that spider communities in cotton are diverse, including a large range of foraging guilds, making them suitable for a conservation biological control programme. We also found that spider diversity increased from high to low latitudes, and the communities were different, even though the spiders were in the same monocultural habitat. Spider beatsheet communities around Australia were dominated by different families, and responded differently to seasonal changes, indicating that different pest groups would be targeted at different locations. These results show that diversity can increase from high to low latitudes, even if spatial heterogeneity is held constant, and that other factors external to the cotton crop are influencing spider species composition. Other models which may account for the latitudinal gradient, such as non-equilibrium regional processes, are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New algorithms for the continuous wavelet transform are developed that are easy to apply, each consisting of a single-pass finite impulse response (FIR) filter, and several times faster than the fastest existing algorithms. The single-pass filter, named WT-FIR-1, is made possible by applying constraint equations to least-squares estimation of filter coefficients, which removes the need for separate low-pass and high-pass filters. Non-dyadic two-scale relations are developed and it is shown that filters based on them can work more efficiently than dyadic ones. Example applications to the Mexican hat wavelet are presented.