13 resultados para Good faith objective
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Australian researchers have been developing robust yield estimation models, based mainly on the crop growth response to water availability during the crop season. However, knowledge of spatial distribution of yields within and across the production regions can be improved by the use of remote sensing techniques. Images of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, available since 1999, have the potential to contribute to crop yield estimation. The objective of this study was to analyse the relationship between winter crop yields and the spectral information available in MODIS vegetation index images at the shire level. The study was carried out in the Jondaryan and Pittsworth shires, Queensland , Australia . Five years (2000 to 2004) of 250m resolution, 16-day composite of MODIS Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images were used during the winter crop season (April to November). Seasonal variability of the profiles of the vegetation index images for each crop season using different regions of interest (cropping mask) were displayed and analysed. Correlation analysis between wheat and barley yield data and MODIS image values were also conducted. The results showed high seasonal variability in the NDVI and EVI profiles, and the EVI values were consistently lower than those of the NDVI. The highest image values were observed in 2003 (in contrast to 2004), and were associated with rainfall amount and distribution. The seasonal variability of the profiles was similar in both shires, with minimum values in June and maximum values at the end of August. NDVI and EVI images showed sensitivity to seasonal variability of the vegetation and exhibited good association (e.g. r = 0.84, r = 0.77) with winter crop yields.
Resumo:
When tropical cyclone Larry crossed the Queensland coast on 20 March 2006, commercial, recreational and naval vessels in the port of Cairns, 60 km north of the eye of the cyclone and others closer to the eye, were protected from the destructive winds by sheltering in deep mangrove creeks in Trinity Inlet and off other coastal rivers. The Trinity Inlet mangroves are protected under the comprehensive multi-use Trinity Inlet Management Plan, agreed by the local and state government agencies (Cairns City Council, the Cairns Port Authority and the Queensland Government). Using this Australian example and one from the town of Palompon in Leyte province, central Philippines, we show how long-term mangrove habitat protection resulting from well-conceived coastal planning can deliver important economic and infrastructure benefits.
Resumo:
To facilitate marketing and export, the Australian macadamia industry requires accurate crop forecasts. Each year, two levels of crop predictions are produced for this industry. The first is an overall longer-term forecast based on tree census data of growers in the Australian Macadamia Society (AMS). This data set currently accounts for around 70% of total production, and is supplemented by our best estimates of non-AMS orchards. Given these total tree numbers, average yields per tree are needed to complete the long-term forecasts. Yields from regional variety trials were initially used, but were found to be consistently higher than the average yields that growers were obtaining. Hence, a statistical model was developed using growers' historical yields, also taken from the AMS database. This model accounted for the effects of tree age, variety, year, region and tree spacing, and explained 65% of the total variation in the yield per tree data. The second level of crop prediction is an annual climate adjustment of these overall long-term estimates, taking into account the expected effects on production of the previous year's climate. This adjustment is based on relative historical yields, measured as the percentage deviance between expected and actual production. The dominant climatic variables are observed temperature, evaporation, solar radiation and modelled water stress. Initially, a number of alternate statistical models showed good agreement within the historical data, with jack-knife cross-validation R2 values of 96% or better. However, forecasts varied quite widely between these alternate models. Exploratory multivariate analyses and nearest-neighbour methods were used to investigate these differences. For 2001-2003, the overall forecasts were in the right direction (when compared with the long-term expected values), but were over-estimates. In 2004 the forecast was well under the observed production, and in 2005 the revised models produced a forecast within 5.1% of the actual production. Over the first five years of forecasting, the absolute deviance for the climate-adjustment models averaged 10.1%, just outside the targeted objective of 10%.
Resumo:
This paper describes the employment of two experienced graziers as consultants to apply and evaluate a model for calculating 'safe' long-term grazing capacities of individual properties. The model was based on ecological principles and entailed estimates of average annual forage grown (kglha) on the different land systems on each property and the calculation of the number of livestock (dry sheep equivalents, DSE) required to 'safely' utilise this forage. The grazier consultants applied and evaluated the 'safe' grazing capacity model on 20 properties of their choosing. For evaluation, model results were compared with; (a) the Department of Lands rated carrying capacities for those properties and (b) the grazing capacity assessed independently by the owners of those properties. For the 20 properties, the average 'safe' grazing capacity calculated by the model (21.0 DSE/kmZ) was 8% lighter than the average of the owner assessed capacities (22.7 DSE/kmZ), which in tum was 37% lighter than the average of the pre-1989 Department of Lands rated carrying capacity (31.0 DSE/kmZ). The grazing land management and administrative implications of these results and the role graziers played as consultants are discussed.
Resumo:
Few tools are available to assist graziers, land administrators and financiers in making objective grazing capacity decisions on Australian rangelands, despite existing knowledge regarding stocking rate theory and the impact of stocking rates on land condition. To address this issue a model for objectively estimating 'safe' grazing capacities on individual grazing properties in south-west Queensland was developed. The method is based on 'safe' levels of utilisation (15%-20%) by domestic livestock of average annual forage grown for each land system on a property. Average annual forage grown (kglha) was calculated as the product of the rainfall use efficiency (kglhdmm) and average annual rainfall (mm) for a land system. This estimate included the impact of tree and shrub cover on forage production. The 'safe' levels of forage utilisation for south- west Queensland pastures were derived from the combined experience of (1) re-analysis of the results of grazing trials, (2) reaching a consensus on local knowledge and (3) examination of existing grazing practice on 'benchmark' grazing properties. We recognise the problems in defining, determining and using grazing capacity values, but consider that the model offers decision makers a tool that can be used to assess the grazing capacity of individual properties.
Resumo:
The wheat grain industry is Australia's second largest agricultural export commodity. There is an increasing demand for accurate, objective and near real-time crop production information by industry. The advent of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite platform has augmented the capability of satellite-based applications to capture reflectance over large areas at acceptable pixel scale, cost and accuracy. The use of multi-temporal MODIS-enhanced vegetation index (EVI) imagery to determine crop area was investigated in this article. Here the rigour of the harmonic analysis of time-series (HANTS) and early-season metric approaches was assessed when extrapolating over the entire Queensland (QLD) cropping region for the 2005 and 2006 seasons. Early-season crop area estimates, at least 4 months before harvest, produced high accuracy at pixel and regional scales with percent errors of -8.6% and -26% for the 2005 and 2006 seasons, respectively. In discriminating among crops at pixel and regional scale, the HANTS approach showed high accuracy. The errors for specific area estimates for wheat, barley and chickpea were 9.9%, -5.2% and 10.9% (for 2005) and -2.8%, -78% and 64% (for 2006), respectively. Area estimates of total winter crop, wheat, barley and chickpea resulted in coefficient of determination (R(2)) values of 0.92, 0.89, 0.82 and 0.52, when contrasted against the actual shire-scale data. A significantly high coefficient of determination (0.87) was achieved for total winter crop area estimates in August across all shires for the 2006 season. Furthermore, the HANTS approach showed high accuracy in discriminating cropping area from non-cropping area and highlighted the need for accurate and up-to-date land use maps. The extrapolability of these approaches to determine total and specific winter crop area estimates, well before flowering, showed good utility across larger areas and seasons. Hence, it is envisaged that this technology might be transferable to different regions across Australia.
Resumo:
The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.
Resumo:
The major objective of this experiment was to identify optimum plant population densities for different maize maturity groups depending on the environments’ potential and identify situations that reduce risk of crop failures while maximizing opportunities for better yield when weather conditions are good.
Resumo:
Glucosinolates are a group of sulphur-containing glycosides found in the plant order Brassicales which includes the Brassica vegetables such as broccoli, cabbage and cauliflower. When brought into contact with the plant enzymes, myrosinases, the glucosinolates break down releasing glucose and other products which serve principally in plant defence against herbivores. The most important of the products from a human nutritional viewpoint, are the isothiocyanates. These potent inducers of detoxifying enzymes bestow the distinct anti-cancer properties on these plants. Unique among tropical fruits, papaya is known to contain an abundance of one particular glucosinolate, glucotropaeolin. Other compounds that play a pivotal role in the chemical defence system of many plants are the cyanogenic glycosides. Cyanogenic glycosides are activated by plant enzymes in the event of pest attack, releasing the deterrent: toxic hydrogen cyanide. Papaya, in addition to glucosinolates, also contains low levels of cyanogenic glycosides, an unusual occurrence because it was assumed that the two classes of metabolites were mutually exclusive. Studies measuring the levels of both in the edible parts of the papaya fruit and other utilised tissues are discussed and considered in the context of potential human health ramifications. All rights reserved, Elsevier.
Resumo:
Australia’s and New Zealand’s major agricultural manure management emission sources are reported to be, in descending order of magnitude: (1) methane (CH4) from dairy farms in both countries; (2) CH4 from pig farms in Australia; and nitrous oxide (N2O) from (3) beef feedlots and (4) poultry sheds in Australia. We used literature to critically review these inventory estimates. Alarmingly for dairy farm CH4 (1), our review revealed assumptions and omissions that when addressed could dramatically increase this emission estimate. The estimate of CH4 from Australian pig farms (2) appears to be accurate, according to industry data and field measurements. The N2O emission estimates for beef feedlots (3) and poultry sheds (4) are based on northern hemisphere default factors whose appropriateness for Australia is questionable and unverified. Therefore, most of Australasia’s key livestock manure management greenhouse gas (GHG) emission profiles are either questionable or are unsubstantiated by region-specific research. Encouragingly, GHG from dairy shed manure are relatively easy to mitigate because they are a point source which can be managed by several ‘close-to-market’ abatement solutions. Reducing these manure emissions therefore constitutes an opportunity for meaningful action sooner compared with the more difficult-to-implement and long-term strategies that currently dominate agricultural GHG mitigation research. At an international level, our review highlights the critical need to carefully reassess GHG emission profiles, particularly if such assessments have not been made since the compilation of original inventories. Failure to act in this regard presents the very real risk of missing the ‘low hanging fruit’ in the rush towards a meaningful response to climate change
Resumo:
Sustainable management of native pastures requires an understanding of what the bounds of pasture composition, cover and soil surface condition are for healthy pastoral landscapes to persist. A survey of 107 Aristida/Bothriochloa pasture sites in inland central Queensland was conducted. The sites were chosen for their current diversity of tree cover, apparent pasture condition and soil type to assist in setting more objective bounds on condition ‘states’ in such pastures. Assessors’ estimates of pasture condition were strongly correlated with herbage mass (r = 0.57) and projected ground cover (r = 0. 58), and moderately correlated with pasture crown cover (r = 0.35) and tree basal area (r = 0.32). Pasture condition was not correlated with pasture plant density or the frequency of simple guilds of pasture species. The soil type of Aristida/Bothriochloa pasture communities was generally hard-setting, low in cryptogam cover but moderately covered with litter and projected ground cover (30–50%). There was no correlation between projected ground cover of pasture and estimated ground-level cover of plant crowns. Tree basal area was correlated with broad categories of soil type, probably because greater tree clearing has occurred on the more fertile, heavy-textured clay soils. Of the main perennial grasses, some showed strong soil preferences, for example Tripogon loliiformis for hard-setting soils and Dichanthium sericeum for clays. Common species, such as Chrysopogon fallax and Heteropogon contortus, had no strong soil preference. Wiregrasses (Aristida spp.) tended to be uncommon at both ends of the estimated pasture condition scale whereas H. contortus was far more common in pastures in good condition. Sedges (Cyperaceae) were common on all soil types and for all pasture condition ratings. Plants identified as increaser species were Tragus australianus, daisies (Asteraceae) and potentially toxic herbaceous legumes such as Indigofera spp. and Crotalaria spp. Pasture condition could not be reliably predicted based on the abundance of a single species or taxon but there may be scope for using integrated data for four to five ecologically contrasting plants such as Themeda triandra with daisies, T. loliiformis and flannel weeds (Malvaceae).
Resumo:
Pratylenchus thornei is a root-lesion nematode (RLN) of economic significance in the grain growing regions of Australia. Chickpea (Cicer arietinum) is a significant legume crop grown throughout these regions, but previous testing found most cultivars were susceptible to P. thornei. Therefore, improved resistance to P. thornei is an important objective of the Australian chickpea breeding program. A glasshouse method was developed to assess resistance of chickpea lines to P. thornei, which requires relatively low labour and resource input, and hence is suited to routine adoption within a breeding program. Using this method, good differentiation of chickpea cultivars for P. thornei resistance was measured after 12 weeks. Nematode multiplication was higher for all genotypes than the unplanted control, but of the 47 cultivars and breeding lines tested, 17 exhibited partial resistance, allowing less than two fold multiplication. The relative differences in resistance identified using this method were highly heritable (0.69) and were validated against P. thornei data from seven field trials using a multi-environment trial analysis. Genetic correlations for cultivar resistance between the glasshouse and six of the field trials were high (>0.73). These results demonstrate that resistance to P. thornei in chickpea is highly heritable and can be effectively selected in a limited set of environments. The improved resistance found in a number of the newer chickpea cultivars tested shows that some advances have been made in the P. thornei resistance of Australian chickpea cultivars, and that further targeted breeding and selection should provide incremental improvements.