7 resultados para Gonadotropin-Releasing Hormone
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The present work was designed to study certain aspects of the endocrine regulation of gonadotropin-releasing hormone receptor (GnRH-R) in the pituitary of the teleost fish tilapia. A GnRH-R was cloned from the pituitary of hybrid tilapia (taGnRH-R) and was identified as a typical seven-transmembrane receptor. Northern blot analysis revealed a single GnRH-R transcript in the pituitary of approximately 2.3 kilobases. The taGnRH-R mRNA levels were significantly higher in females than in males. Injection of the salmon GnRH analog (sGnRHa; 5–50 μg/kg) increased the steady-state levels of taGnRH-R mRNA, with the highest response recorded at 25 μg/kg and at 36 h. At the higher dose of sGnRHa (50 μg/kg), taGnRH-R transcript appeared to be down-regulated. Exposure of tilapia pituitary cells in culture to graded doses (0.1–100 nM) of seabream (sbGnRH = GnRH I), chicken II (cGnRH II), or salmon GnRH (sGnRH = GnRH III) resulted in a significant increase in taGnRH-R mRNA levels. The highest levels of both LH release and taGnRH-R mRNA levels were recorded after exposure to cGnRH II and the lowest after exposure to sbGnRH. The dopamine-agonist quinpirole suppressed LH release and mRNA levels of taGnRH-R, indicating an inhibitory effect on GnRH-R synthesis. Collectively, these data provide evidence that GnRH in tilapia can up- regulate, whereas dopamine down-regulates, taGnRH-R mRNA levels.
Resumo:
The G-protein-coupled receptor 54 (muGPR54) cDNA was cloned from the brain of the grey mullet, and its expression level, as well as those of the gonadotropin-releasing hormones (GnRH1, GnRH2, GnRH3) and dopamine receptor D2 (drd2), in the brain, pituitary and ovary of pubertal fish (early, intermediate, advanced) were determined by real-time quantitative RT-PCR (QPCR). The muGPR54 cDNA has an open reading frame of 1140 bp with a predicted 380 amino acid peptide, containing seven putative transmembrane domains and putative N-glycosylation and protein kinase C phosphorylation sites. QPCR results showed that the early stage of puberty in grey mullet is characterized by significantly high levels of expression of GPR54, GnRH and drd2 in the brain relative to the intermediate and advanced stages, except for GnRH1 that increased at the advanced stage of puberty. In the pituitary, drd2 expression declined significantly at the advanced stage relative to levels at the intermediate stage. Ovarian expression of GPR54 significantly increased from the intermediate stage of puberty relative to the early stage while that of GnRH1 acutely increased at the advanced stage of puberty. The ovarian expression of drd2 decreased as puberty progressed, but the changes were not significant. The results suggest the possible role of GPR54 and GnRH in positively regulating pubertal development in grey mullet and the dopaminergic inhibition of reproductive function mediated by drd2.
Resumo:
The aim of this study was to investigate the effects on follicle stimulating hormone (FSH) secretion and dominant follicle (OF) growth, of treatment of Bos indicus heifers with different combinations of intra-vaginal progesterone releasing devices (IPRD), oestradiol benzoate (ODB), PGF(2 alpha), and eCG. Two-year-old Brahman (BN; n=30) and Brahman-cross (BNX; n=34) heifers were randomly allocated to three IPRD-treatments: (i) standard-dose IPRD [CM 1.56 g; 1.56 g progesterone (P-4); n = 17]; (ii) half-dose IPRD (CM 0.78 g; 0.78 g p(4); n=15); (iii) half-dose IPRD + 300 IU eCG at IPRD removal (CM 0.78 g+G; n=14); and, (iv) non-IPRD control (2 x PGF(2 alpha); n=18) 500 mu g cloprostenol on Days -16 and -2. IPRD-treated heifers received 250 mu g PGF(2 alpha) at IPRD insertion (Day 10) and IPRD removal (Day -2) and 1 mg ODB on Day -10 and Day -1. Follicular dynamics were monitored daily by trans-rectal ultrasonography from Day -10 to Day 1. Blood samples for determination of P-4 were collected daily and samples for FSH determination were collected at 12 h intervals from Day -9 to Day -2. A significant surge in concentrations of FSH was observed in the 2 x PGF(2 alpha), treatment 12 h prior and 48 h after follicular wave emergence, but not in the IPRD-treated heifers. Estimated mean concentrations of total plasma P-4 during the 8 days of IPRD insertion was greater (P<0.001) in the CM 1.56 g P-4 treated heifers compared to the CM 0.78 g P-4 treated heifers (18.38 ng/ml compared with 11.09 ng/ml, respectively). A treatment by genotype interaction (P=0.036) was observed in the mean plasma P4 concentration in heifers with no CL during IPRD insertion, whereby BN heifers in the CM 1.56 g treatment had greater plasma P-4 than the BNX heifers on Days-9, -7, -6, -5, and -4. However, there was no genotype effect in the CM 0.78 g +/- G or the 2 x PGF(2 alpha) treatment. Treatment had no effect on the DF growth from either day of wave emergence (P=0.378) or day of IPRD removal (P=0.780) to ovulation. This study demonstrates that FSH secretion in B. indicus heifers treated with a combination of IPRD's and ODB to synchronise ovulation was suppressed during the period of IPRD insertion but no significant effect on growth of the DF was observed. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Release of virulent myxoma virus has been a key component of rabbit-control operations in Queensland, Australia, since the 1960s but its use rests on anecdotal reports. During a routine operation to release virulent myxoma virus we found no evidence to support the continued regular use of the technique in south-west Queensland. Radio-tagged rabbits inoculated with virulent myxoma virus contracted the disease but failed to pass enough virus to other rabbits to spread the disease. Rabbits with clinical signs of myxomatosis that were shot were infected with field strain derived from the original laboratory strain released in 1950 rather than the virulent strain that has been released annually. There was no change in rabbit survival or abundance caused by the release. Nevertheless, the release of virulent virus may be useful against isolated pockets of rabbits mainly because field strains are less likely to be present. Such pockets are more common now that rabbit haemorrhagic disease virus is established in Queensland.
Resumo:
The primary objective of this study was to investigate the impact of animal-level factors including energy balance and environmental/management stress, on the ovarian function of Bos indicus heifers treated to synchronize ovulation. Two-year-old Brahman (BN) (n = 30) and BN-cross (n = 34) heifers were randomly allocated to three intravaginal progesterone-releasing device (IPRD) treatment groups: (i) standard-dose IPRD [Cue-Mate (R) (CM) 1.56 g; n = 17]; (ii) half-dose IPRD [0.78 g progesterone (P4); CM 0.78 g; n = 15]; (iii) half-dose IPRD + 300 IU equine chorionic gonadotrophin at IPRD removal (CM 0.78 g + G; n = 14); (iv) and a control group, 2x PGF2a [500 mu g prostaglandin F2a (PGF2a)] on Day -16 and -2 (n = 18). Intravaginal progesterone-releasing device-treated heifers received 250 mu g PGF2a at IPRD insertion (Day -10) and IPRD removal (Day -2) and 1 mg oestradiol benzoate on Day -10 and -1. Heifers were managed in a small feedlot and fed a defined ration. Ovarian function was evaluated by ultrasonography and plasma P4 throughout the synchronized and return cycles. Energy balance was evaluated using plasma insulin-like growth factor 1 (IGF-I) and glucose concentrations. The impact of environmental stressors was evaluated using plasma cortisol concentration. Heifers that had normal ovarian function had significantly higher IGF-I concentrations at commencement of the experiment (p = 0.008) and significantly higher plasma glucose concentrations at Day -2 (p = 0.040) and Day 4 (p = 0.043), than heifers with abnormal ovarian function. There was no difference between the mean pre-ovulatory cortisol concentrations of heifers that ovulated or did not ovulate. However, heifers that ovulated had higher cortisol concentrations at Day 4 (p = 0.056) and 6 (p = 0.026) after ovulation than heifers that did not ovulate.
Resumo:
Pregnancy rates (PR) to fixed-time AI (FTAI) in Brahman heifers were compared after treatment with a traditional oestradiol-based protocol (OPO-8) or a modified protocol (OPO-6) where the duration of intravaginal progesterone releasing device (IPRD) was reduced from 8 to 6 days, and the interval from IPRD removal to oestradiol benzoate (ODB) was increased from 24 to 36 h. Rising 2 yo heifers on Farm A: (n = 238 and n = 215; two consecutive days AI); B (n = 271); and C (n = 393) were allocated to OPO-8 or OPO-6. An IPRD was inserted and 1 mg ODB i.m. on Day 0 for OPO-8 heifers and Day 2 for OPO-6 heifers. On Day 8, the IPRD was removed and 500 μg cloprostenol i.m. At 24 h, for OPO-8 heifers, and 36 h, for OPO-6 heifers, post IPRD removal all heifers received 1 mg ODB i.m. FTAI was conducted at 54 and 72 h post IPRD removal for OPO-8 and OPO-6 heifers. At Farm A, OPO-6 heifers, AI on the second day, the PR was 52.4 to FTAI (P = 0.024) compared to 36.8 for OPO-8 heifers. However, no differences were found between OPO-8 and OPO-6 protocols at Farm A (first day of AI) (39.9 vs. 35.7), or Farms B (26.2 vs. 35.4) and C (43.2 vs. 40.3). Presence of a corpus luteum at IPRD insertion affected PR to FTAI (43.9 vs. 28.8; P < 0.001). This study has shown that the modified ovulation synchronisation protocol OPO-6 may be a viable alternative to the OPO-8 protocol for FTAI in B. indicus heifers.
Resumo:
In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O 2 • − ) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.