3 resultados para Glucan

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In crustaceans, a range of physiological processes involved in ovarian maturation occurs in organs of the cephalothorax including the hepatopancrease, mandibular and Y-organ. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites within the eyestalk. Reproductive dysfunction in captive-reared prawns, Penaeus monodon, is believed to be due to deficiencies in these factors. In this study, we investigated the expression of gene transcripts in the cephalothorax and eyestalk from wild-caught and captive-reared animals throughout ovarian maturation using custom oligonucleotide microarray screening. We have isolated numerous transcripts that appear to be differentially expressed throughout ovarian maturation and between wild-caught and captive-reared animals. In the cephalothorax, differentially expressed genes included the 1,3-beta-D-glucan-binding high-density lipoprotein, 2/3-oxoacyl-CoA thiolase and vitellogenin. In the eyestalk, these include gene transcripts that encode a protein that modulates G-protein coupled receptor activity and another that encodes an architectural transcription factor. Each may regulate the expression of reproductive neuropeptides, such as the crustacean hyperglycaemic hormone and molt-inhibiting hormone. We could not identify differentially expressed transcripts encoding known reproductive neuropeptides in the eyestalk of either wild-caught or captive-reared prawns at any ovarian maturation stage, however, this result may be attributed to low relative expression levels of these transcripts. In summary, this study provides a foundation for the study of target genes involved in regulating penaeid reproduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of epidemics of Fusarium head blight (FHB; caused by Fusarium graminearum Schwabe [teleomorph Gibberella zeae (Schwein.) Petch]) in the northern Great Plains of the United States and Canada in the past two decades, malting barley breeders have been forced to use nonadapted barley (Hordeum vulgare L.) accessions as sources of FHB resistance. Many of the resistant accessions are from East Asia, and limited information is available on their genetic diversity and malt quality. The objectives of this study were to determine the genetic diversity among 30 East Asian accessions and two North American cultivars. Genetic diversity was based on 49 simple-sequence repeat markers. All accessions were tested for barley grain brightness; protein content; 1,000-kernel weight; malting loss; fine-grind malt extract; content of plump kernels, free amino nitrogen, soluble protein, and wort beta-glucan; the Kolbach index (i.e., the ratio of malt soluble protein to malt total protein); a-amylase activity; diastatic power; won color; and wort viscosity. A few accessions had equal quality compared with Harrington and Conlon barley for individual traits but not for all. Qing 2, Mokkei 93-78, and Nitakia 48 could be excellent sources for increased malt extract; Nitakia 48 is a possible source for low wort viscosity; and Mokkei 93-78 and Nitakia 48 are putative sources of low beta-glucan content. The cluster analyses also implied that the malt quality of an accession cannot be predicted based on the country where it was developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43 (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6 (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74), with environment (E) responsible for 5–14. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.