18 resultados para Genetic-evidence

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial DNA D-loop (control) region (426-bp) was used to infer the genetic structure of Spanish mackerel (Scomberomorus commerson) from populations in Southeast Asia (Brunei, East and West Malaysia, Philippines, Thailand, Singapore, and China) and northern Australia (including western Timor). An east–west division along Wallace’s Line was strongly supported by a significant AMOVA, with 43% of the total sequence variation partitioned among groups of populations. Phylogenetic and network analyses supported two clades: clade A and clade B. Members of clade A were found in Southeast Asia and northern Australia, but not in locations to the west (Gulf of Thailand) or north (China). Clade B was found exclusively in Southeast Asia. Genetic division along Wallace’s Line suggests that co-management of S. commerson populations for future sustainability may not be necessary between Southeast Asian nations and Australia, however all countries should share the task of management of the species in Southeast Asia equally. More detailed genetic studies of S. commerson populations in the region are warranted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patterns of mitochondrial DNA (mtDNA) variation were used to analyse the population genetic structure of southwestern Indian Ocean green turtle (Chelonia mydas) populations. Analysis of sequence variation over 396 bp of the mtDNA control region revealed seven haplotypes among 288 individuals from 10 nesting sites in the Southwest Indian Ocean. This is the first time that Atlantic Ocean haplotypes have been recorded among any Indo-Pacific nesting populations. Previous studies indicated that the Cape of Good Hope was a major biogeographical barrier between the Atlantic and Indian Oceans because evidence for gene flow in the last 1.5 million years has yet to emerge. This study, by sampling localities adjacent to this barrier, demonstrates that recent gene flow has occurred from the Atlantic Ocean into the Indian Ocean via the Cape of Good Hope. We also found compelling genetic evidence that green turtles nesting at the rookeries of the South Mozambique Channel (SMC) and those nesting in the North Mozambique Channel (NMC) belong to separate genetic stocks. Furthermore, the SMC could be subdivided in two different genetic stocks, one in Europa and the other one in Juan de Nova. We suggest that this particular genetic pattern along the Mozambique Channel is attributable to a recent colonization from the Atlantic Ocean and is maintained by oceanic conditions in the northern and southern Mozambique Channel that influence early stages in the green turtle life cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n = 237) and the milk shark (Rhizoprionodon acutus, n = 207) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751–0.903, respectively; microsatellite loci, 0.038–0.047 respectively). Our results support the spatially homogeneous monitoring and management plan for shark species in Queensland, Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allozyme electrophoresis was used to investigate the genetic stock structure of snapper, Pagrus auratus (Bloch and Schneider) on the east coast of Australia. Spatial variation in allele frequency was examined at nine polymorphic loci. The results support a single, relatively weak genetic disjunction among the P. auratus populations north of Sydney (latitude 33°52?) but south of Forster (latitude 31°58?) on the central coast of New South Wales. There was also evidence for genetic isolation by distance on the east coast. The influence of the East Australian Current (EAC) in transporting larvae to the south, coupled with the general northward migration pattern of adult snapper is believed to be responsible for maintaining a panmictic snapper population on much of the east coast of Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To genotype bovine herpesvirus type 1 (BHV-1) isolates from cattle in New Zealand. METHODS: Twenty-eight BHV-1 isolates were collected from clinical samples from cattle over 28 years. They were characterised and compared using restriction endonuclease analysis (REA), and polymerase chain reaction (PCR) and DNA sequencing. RESULTS: Twenty-four isolates were classified as bovine herpesvirus subtype 1.2b (BHV-1.2b) by REA. The remaining four isolates were distinct from the others in REA profiles of one of the major enzymes (HindIII) by which the classification was made. However, these four isolates were closely related to others when the REA profiles of other restriction enzymes were studied, and therefore were regarded as divergent strains of BHV-1.2b. All BHV-1 isolates were detectable by PCR, and sequence analysis of selected PCR products did not indicate any significant differences between isolates. CONCLUSION: BHV-1.2b appears to be the predominant strain of BHV-1 in cattle in New Zealand. There was no evidence that more virulent strains of BHV-1, e.g. subtype 1.1 and BHV type 5, are, or have been, present in New Zealand. Genetic variations exist among these BHV-1.2b isolates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution melt-curve analysis of random amplified polymorphic DNA (RAPD-HRM) is a novel technology that has emerged as a possible method to characterise leptospires to serovar level. RAPD-HRM has recently been used to measure intra-serovar convergence between strains of the same serovar as well as inter-serovar divergence between strains of different serovars. The results indicate that intra-serovar heterogeneity and inter-serovar homogeneity may limit the application of RAPD-HRM in routine diagnostics. They also indicate that genetic attenuation of aged, high-passage-number isolates could undermine the use of RAPD-HRM or any other molecular technology. Such genetic attenuation may account for a general decrease seen in titres of rabbit hyperimmune antibodies over time. Before RAPD-HRM can be further advanced as a routine diagnostic tool, strains more representative of the wild-type serovars of a given region need to be identified. Further, RAPD-HRM analysis of reference strains indicates that the routine renewal of reference collections, with new isolates, may be needed to maintain the genetic integrity of the collections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The white-spotted eagle ray Aetobatus narinari is a species complex that occurs circumglobally throughout warm-temperate waters. Aetobatus narinari is semi-pelagic and large (up to 300 cm disc width), suggesting high dispersal capabilities and gene flow on a wide spatial scale. Sequence data from two mitochondrial genes, cytochrome b (cytb) and NADH dehydrogenase subunit 4 (ND4), were used to determine the genetic variability within and among 18 sampling locations in the central Indo-Pacific biogeographical region. Populations in the Indo-Pacific were highly genetically structured with c. 70% of the total genetic variation found among three geographical regions (East China Sea, Southeast Asia and Australia). FST was 0.64 for cytb and 0.53 for ND4, with φST values being even larger, that is, 0.78 for cytb and 0.65 for ND4. This high-level genetic partitioning provides strong evidence against extensive gene flow in A. narinari. The degree of genetic population structuring in the Indo-Pacific was similar to that found on a global scale. Global FST was 0.63 for cytb and 0.57 for ND4, and global φST values were 0.94 for cytb and 0.82 for ND4. This suggests that the A. narinari complex may be more speciose than the two or three species proposed to date. Further sampling and genetic analyses are likely to uncover the ‘evolutionarily significant’ and ‘management’ units that are critical to determine the susceptibilities of individual populations to regional fishing pressures and to provide advice on management options. Network analyses showed a close genetic relationship between haplotypes from the central Indo-Pacific and South Africa, providing support for a proposed dispersal pathway from the possible centre of origin of the A. narinari species complex in the Indo-Pacific into the Atlantic Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Indo-West Pacific (IWP), from South Africa in the western Indian Ocean to the western Pacific Ocean, contains some of the most biologically diverse marine habitats on earth, including the greatest biodiversity of chondrichthyan fishes. The region encompasses various densities of human habitation leading to contrasts in the levels of exploitation experienced by chondrichthyans, which are targeted for local consumption and export. The demersal chondrichthyan, the zebra shark, Stegostoma fasciatum, is endemic to the IWP and has two current regional International Union for the Conservation of Nature (IUCN) Red List classifications that reflect differing levels of exploitation: ‘Least Concern’ and ‘Vulnerable’. In this study, we employed mitochondrial ND4 sequence data and 13 microsatellite loci to investigate the population genetic structure of 180 zebra sharks from 13 locations throughout the IWP to test the concordance of IUCN zones with demographic units that have conservation value. Mitochondrial and microsatellite data sets from samples collected throughout northern Australia and Southeast Asia concord with the regional IUCN classifications. However, we found evidence of genetic subdivision within these regions, including subdivision between locations connected by habitat suitable for migration. Furthermore, parametric FST analyses and Bayesian clustering analyses indicated that the primary genetic break within the IWP is not represented by the IUCN classifications but rather is congruent with the Indonesian throughflow current. Our findings indicate that recruitment to areas of high exploitation from nearby healthy populations in zebra sharks is likely to be minimal, and that severe localized depletions are predicted to occur in zebra shark populations throughout the IWP region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The territorial fishing zones of Australia and Indonesia are contiguous to the north of Australia in the Timor and Arafura Seas and in the Indian Ocean to the north of Christmas Island. The area surrounding the shared boundary consists of a variety of bio-diverse marine habitats including shallow continental shelf waters, oceanic trenches and numerous offshore islands. Both countries exploit a variety of fisheries species, including whaler (Carcharhinus spp.) and hammerhead sharks (Sphyrna spp.). Despite their differences in social and financial arrangements, the two countries are motivated to develop complementary co-management practices to achieve resource sustainability. An essential starting point is knowledge of the degree of population subdivision, and hence fisheries stock status, in exploited species. Results: Populations of four commercially harvested shark species (Carcharhinus obscurus, Carcharhinus sorrah, Prionace glauca, Sphyrna lewini) were sampled from northern Australia and central Indonesia. Neutral genetic markers (mitochondrial DNA control region sequence and allelic variation at co-dominant microsatellite loci) revealed genetic subdivision between Australian and Indonesian populations of C. sorrah. Further research is needed to address the possibility of genetic subdivision among C. obscurus populations. There was no evidence of genetic subdivision for P. glauca and S. lewini populations, but the sampling represented a relatively small part of their distributional range. For these species, more detailed analyses of population genetic structure is recommended in the future. Conclusion: Cooperative management between Australia and Indonesia is the best option at present for P. glauca and S. lewini, while C. sorrah and C. obscurus should be managed independently. On-going research on these and other exploited shark and ray species is strongly recommended. Biological and ecological similarity between species may not be a predictor of population genetic structure, so species-specific studies are recommended to provide new data to assist with sustainable fisheries management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproductive philopatry in bull sharks Carcharhinus leucas was investigated by comparing mitochondrial (NADH dehydrogenase subunit 4, 797 base pairs and control region genes 837 base pairs) and nuclear (three microsatellite loci) DNA of juveniles sampled from 13 river systems across northern Australia. High mitochondrial and low microsatellite genetic diversity among juveniles sampled from different rivers (mitochondrial fST = 0.0767, P < 0.05; microsatellite FST = -0.0022, P > 0.05) supported female reproductive philopatry. Genetic structure was not further influenced by geographic distance (P > 0.05) or long-shore barriers to movement (P > 0.05). Additionally, results suggest that C. leucas in northern Australia has a long-term effective population size of 11 000-13 000 females and has undergone population bottlenecks and expansions that coincide with the timing of the last ice-ages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. Methods and Findings:Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and FST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717–0.03508, p values ≤ 0.0013; pairwise FST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia’s east coast (pairwise ΦST = 0.01328, p < 0.015), and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04).Conclusions: The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetically controlled asynchrony in anthesis is an effective barrier to gene flow between planted and native forests. We investigated the degree of genetically controlled variation in the timing of key floral developmental stages in a major plantation species in subtropical Australia, Corymbia citriodora subsp. variegata K.D. Hill and L.A.S Johnson, and its relative C. maculata K.D. Hill and L.A.S. Johnson. Flowering observations were made in a common garden planting at Bonalbo in northern New South Wales in spring on 1855 trees from eight regions over three consecutive years, and monthly on a subset of 208 trees for 12 months. Peak anthesis time was stable over years and observations from translocated trees tended to be congruent with the observations in native stands, suggesting strong genetic control of anthesis time. A cluster of early flowering provenances was identified from the north-east of the Great Dividing Range. The recognition of a distinct flowering race from this region accorded well with earlier evidence of adaptive differentiation of populations from this region and geographically-structured genetic groupings in C. citriodora subsp. variegata. The early flowering northern race was more fecund, probably associated with its disease tolerance and greater vigour. Bud abundance fluctuated extensively at the regional level across 3 years suggesting bud abundance was more environmentally labile than timing of anthesis. Overall the level of flowering in the planted stand (age 12 years) was low (8–12% of assessed trees with open flowers), and was far lower than in nearby native stands. Low levels of flowering and asynchrony in peak anthesis between flowering races of C. citriodora subsp. variegata may partially mitigate a high likelihood of gene flow where the northern race is planted in the south of the species range neighbouring native stands

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turnip mosaic virus (TuMV) is a potyvirus that is transmitted by aphids and infects a wide range of plant species. We investigated the evolution of this pathogen by collecting 32 isolates of TuMV, mostly from Brassicaceae plants, in Australia and New Zealand. We performed a variety of sequence-based phylogenetic and population genetic analyses of the complete genomic sequences and of three non-recombinogenic regions of those sequences. The substitution rates, divergence times and phylogeographical patterns of the virus populations were estimated. Six inter- and seven intralineage recombination-type patterns were found in the genomes of the Australian and New Zealand isolates, and all were novel. Only one recombination-type pattern has been found in both countries. The Australian and New Zealand populations were genetically different, and were different from the European and Asian populations. Our Bayesian coalescent analyses, based on a combination of novel and published sequence data from three nonrecombinogenic protein-encoding regions, showed that TuMV probably started to migrate from Europe to Australia and New Zealand more than 80 years ago, and that distinct populations arose as a result of evolutionary drivers such as recombination. The basal-B2 subpopulation in Australia and New Zealand seems to be older than those of the world-B2 and -B3 populations. To our knowledge, our study presents the first population genetic analysis of TuMV in Australia and New Zealand. We have shown that the time of migration of TuMV correlates well with the establishment of agriculture and migration of Europeans to these countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quarter of Australia’s sunflower production is from the central highlands region of Queensland and is currently worth six million dollars ($AUD) annually. From the early 2000s a severe necrosis disorder of unknown aetiology was affecting large areas of sunflower crops in central Queensland, leading to annual losses of up to 20%. Other crops such as mung bean and cotton were also affected. This PhD study was undertaken to determine if the causal agent of the necrosis disorder was of viral origin and, if so, to characterise its genetic diversity, biology and disease cycle, and to develop effective control strategies. The research described in this thesis identified Tobacco streak virus (TSV; genus Ilarvirus, family Bromoviridae) as the causal agent of the previously unidentified necrosis disorder of sunflower in central Queensland. TSV was also the cause of commonly found diseases in a range of other crops in the same region including cotton, chickpea and mung bean. This was the first report from Australia of natural field infections of TSV from these four crops. TSV strains have previously been reported from other regions of Australia in several hosts based on serological and host range studies. In order to determine the relatedness of previously reported TSV strains with TSV from central Queensland, we characterised the genetic diversity of the known TSV strains from Australia. We identified two genetically distinct TSV strains from central Queensland and named them based on their major alternative hosts, TSV-parthenium from Parthenium hysterophorus and TSV-crownbeard from Verbesina encelioides. They share only 81 % total-genome nucleotide sequence identity. In addition to TSV-parthenium and TSV-crownbeard from central Queensland, we also described the complete genomes of two other ilarvirus species. This proved that previously reported TSV strains, TSV-S isolated from strawberry and TSV-Ag from Ageratum houstonianum, were actually the first record of Strawberry necrotic shock virus from Australia, and a new subgroup 1 ilarvirus, Ageratum latent virus. Our results confirmed that the TSV strains found in central Queensland were not related to previously described strains from Australia and may represent new incursions. This is the first report of the genetic diversity within subgroup 1 ilarviruses from Australia. Based on field observations we hypothesised that parthenium and crownbeard were acting as symptomless hosts of TSV-parthenium and TSV-crownbeard, respectively. We developed strain-specific multiplex PCRs for the three RNA segments to accurately characterise the range of naturally infected hosts across central Queensland. Results described in this thesis show compelling evidence that parthenium and crownbeard are the major (symptomless) alternative hosts of TSV-parthenium and TSV-crownbeard. While both TSV strains had wide natural host ranges, the geographical distribution of each strain was closely associated with the respective distribution of their major alternative hosts. Both TSV strains were commonly found across large areas of central Queensland, but we only found strong evidence for the TSV-parthenium strain being associated with major disease outbreaks in nearby crops. The findings from this study demonstrate that both TSV-parthenium and TSV-crownbeard have similar life cycles but some critical differences. We found both TSV strains to be highly seed transmitted from their respective major alternative hosts from naturally infected mother plants and survived in seed for more than 2 years. We conclusively demonstrated that both TSV strains were readily transmitted via virus-infected pollen taken from the major alternative hosts. This transmission was facilitated by the most commonly collected thrips species, Frankliniella schultzei and Microcephalothrips abdominalis. These results illustrate the importance of seed transmission and efficient thrips vector species for the effective survival of these TSV strains in an often harsh environment and enables the rapid development of TSV disease epidemics in surrounding crops. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was naturally infected by, and an experimental host of TSV-parthenium. However, this infection combination resulted in non-viable crownbeard seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. Based on our field observations we hypothesised that there were differences in relative tolerance to TSV infection between different sunflower hybrids and that seasonal variation in disease levels was related to rainfall in the critical early crop stage. Results from our field trials conducted over multiple years conclusively demonstrated significant differences in tolerance to natural infections of TSV-parthenium in a wide range of sunflower hybrids. Glasshouse tests indicate the resistance to TSV-parthenium identified in the sunflower hybrids is also likely to be effective against TSV-crownbeard. We found a significant negative association between TSV disease incidence in sunflowers and accumulated rainfall in the months of March and April with increasing rainfall resulting in reduced levels of disease. Our results indicate that the use of tolerant sunflower germplasm will be a critical strategy to minimise the risk of TSV epidemics in sunflower.