7 resultados para Genetic resistance
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Fusarium wilt of banana, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. A particularly virulent strain of the pathogen, tropical race 4 (TR4), presents an emerging threat to banana producing regions throughout the world. No commercially acceptable banana cultivar is resistant to TR4 and, as with all strains of the Fusarium wilt pathogen, there is no effective chemical control. Genetic resistance to TR4 has been observed in the diploid wild banana Musa acuminata subsp. malaccensis, which has consequently received attention as a potential source of Fusarium resistance genes. The aim of this research was to determine the pattern of inheritance of the resistance trait by screening plants for resistance to Foc subtropical race 4 (SR4) and TR4. Our results showed that the F1 progeny of self-fertilized malaccensis plants challenged in pot trials against SR4 (VCGs 0120, 0129, 01211) and TR4 (VCG 01213/16) segregated for resistance according to a Mendelian ratio of 3:1 which is consistent with a single dominant gene hypothesis.
Resumo:
Diseases, pests and environmental constraints pose a major threat to the sustainability of banana production globally. To address these challenges, the discovery and study of new sources of genetic resistance and adaptability are required, along with the general conservation of diversity. The Solomon Islands, located in the south-western Pacific region near Papua New Guinea, are a major center of banana diversity. Some collections had been made by nationals of some of the diversity present but little was known internationally of the rich genetic resource present. Two separate visits to the Solomon Islands characterized banana collections, documented and collected germplasm, recommended conservation strategies and provided training in cultivar characterization. A remarkable range of genetic diversity was found, including: many AA and AAA cooking types somewhat like those present in Papua New Guinea; nine Fei cultivars in relatively common usage, and two undescribed wild species as well as five AAB Pacific Plantains and four ABB cooking bananas belonging to the Kalapua subgroup. About six of the unique cultivars were successfully collected and established in the regional in vitro germplasm collection of SPC in Suva, Fiji. Nine Solomon Islanders were trained in the finer points of characterizing banana cultivars. Further collecting and study/evaluation of this rich diversity will promote its appreciation and potential utilization for meeting the challenges and opportunities ahead. Future studies could also determine the spread of the Awawe species and variability of morphological traits in the population. Community-based conservation could promote awareness of dietary diversity for better nutrition, via using the Fei bananas described in this paper. Establishing a virus-free regional field collection could help in comprehensively characterizing and evaluating regional Musa genetic resources. Existing sites could embrace the broader unique diversity of the Solomon Islands, and facilitate sharing this diversity in conjunction with a regional virus-tested in vitro collection.
Resumo:
Major diseases, including Fusarium wilt tropical race 4, threaten banana production systems worldwide. New sources of genetic resistance are considered necessary in the fight against such diseases. The triangular region of Indonesia taking in Sulawesi, the Maluku Islands and Lesser Sunda Islands was prioritized by the Global Musa Genetic Resources Network, MusaNet for exploration and collecting. It is just east of the Wallace Line, which is recognized as a transition zone for flora in southeast Asia, and had been little explored. Bioversity International funded a team of scientists from Indonesia and Australia to make collecting missions in the triangle in October 2012 and February 2013. Suckers and seeds of 35 promising new accessions were collected. About 90% of these are either wild species or diploid cultivars of more direct use to breeding programs. These were morphologically characterized during the collecting missions and included a set of photographs recommended by Bioversitys Taxonomic Advisory Group. Cigar leaf samples were also collected and sent as fresh samples to the International Banana Genotyping Centre in the Czech Republic. Ploidy and DNA (SSR) genotyping determinations from these samples have been invaluable in quickly interpreting and better appreciating what has been discovered. The new accessions have been grown on at Solok field collection, West Sumatra and will be made available by Indonesia to the international community, including breeding programs, for evaluation and utilization. Information on wild Eumusa prompts a rethinking of the phytogeography of Musa acuminata. The variation within the Australimusa species M. lolodensis highlights the need for broader study of this Musa section. French Plantain-like edible AAs and prospects for the generation of African plantains in the region were identified. The mission indicated existence of local edible ABs in eastern Indonesia in association with balbisiana hybrids origins in the region. Further explorations in the region should add to Musa diversity knowledge.
Resumo:
Plant losses due to fungal diseases in strawberry (Fragaria × ananassa Duch.) can potentially cause total loss of production. Three fungal pathogens, Fusarium oxysporum f. sp. fragariae, Colletotrichum gloeosporioides and Macrophomina phaseolina, cause similar crown rot and wilt symptoms in strawberries in Queensland. Since the withdrawal of methyl bromide in 2005, no effective chemical control of any of the three pathogens has been available. This study aims at identifying sources of plant genetic resistance that can be used in the breeding program to develop resistant cultivars for use as part of an integrated disease management plan in commercial strawberry production. Results from glasshouse pathogenicity and screening trials on the three pathogens showed that when breeding for resistance against a pathogen, resistance to other pathogens also needs to be considered, e.g., cultivar 'Festival' is resistant to F. oxysporum f. sp. fragariae, but is highly susceptible to C. gloeosporioides. The cultivars 'Earlisweet', 'Kabarla' and 'Phenomenal', two seedling clones and four DAFF breeding lines were resistant to C. gloeosporioides. Cultivar 'Suncoast Delight' showed the most promising level of resistance to M. phaseolina. These cultivars, breeding lines and seedling selections have been made available for incorporation into the crossing program to support the Queensland strawberry breeding program.
Resumo:
QTL identified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.
Resumo:
Fumigation with phosphine gas is the primary method of controlling stored grain pests. In Turkey, phosphine has been used extensively since the 1950's. Even though high levels of phosphine resistance have been detected in several key stored products pests across the world, it has never been studied in Turkey despite this long history of phosphine use. High-level phosphine resistance has been detected and genetically characterised previously in the rust red flour beetle, Tribolium castaneum in other countries. Since this pest is also a common problem in stored grain environment in Turkey, the current study was undertaken for the first time, to investigate the distribution and strength of phosphine resistance in T. castaneum. Four strains of T. castaneum were tested through bioassays for determining the weak and strong phosphine resistance phenotypes on the basis of the response of adults to discriminating phosphine concentrations of 0.03 mg/L and 0.25 mg/L, for 20 hour exposures respectively. Phenotype testing showed all strains exhibited some level of phosphine resistance with a maximum level of 196 fold. Sequencing and genetic testing of seven field-collected strains showed that all of them carried a strong resistance allele in at the rph2 locus similar to the one previously reported. Our results show that strong resistance to phosphine is common in Turkish strains of T. castaneum.
Resumo:
Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops.