8 resultados para Gain sharing.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The rise in demand by domestic and export markets for a high quality uniform beef carcase has led to more steers being finished in feedlots. However, the profitability of feedlotting is small and economic survival hinges on efficiency (Ryan 1990). Lack of published data prevents conclusions being drawn about the level of efficiency of Australian feedlotting operations but the few studies reported show considerable variation in liveweight performance and carcase characteristics such as fat depth and marbling (Baud et al.) 21st Biennial Conference. 8-12 July, University of Queensland, Brisbane.
Resumo:
Three drafts of Bos indicus cross steers (initially 178-216 kg) grazed Leucaena-grass pasture [Leucaena leucocephala subspecies glabrata cv. Cunningham with green panic (Panicum maximum cv. trichoglume)] from late winter through to autumn during three consecutive years in the Burnett region of south-east Queensland. Measured daily weight gain (DWGActual) of the steers was generally 0.7-1.1 kg/day during the summer months. Estimated intakes of metabolisable energy and dry matter (DM) were calculated from feeding standards as the intakes required by the steers to grow at the DWGActual. Diet attributes were predicted from near infrared reflectance spectroscopy spectra of faeces (F.NIRS) using established calibration equations appropriate for northern Australian forages. Inclusion of some additional reference samples from cattle consuming Leucaena diets into F.NIRS calibrations based on grass and herbaceous legume-grass pastures improved prediction of the proportion of Leucaena in the diet. Mahalanobis distance values supported the hypothesis that the F.NIRS predictions of diet crude protein concentration and DM digestibility (DMD) were acceptable. F.NIRS indicated that the percentage of Leucaena in the diet varied widely (10-99%). Diet crude protein concentration and DMD were usually high, averaging 12.4 and 62%, respectively, and were related asymptotically to the percentage of Leucaena in the diet (R2 = 0.48 and 0.33, respectively). F.NIRS calibrations for DWG were not satisfactory to predict this variable from an individual faecal sample since the s.e. of prediction were 0.33-0.40 kg/day. Cumulative steer liveweight (LW) predicted from F.NIRS DWG calibrations, which had been previously developed with tropical grass and grass-herbaceous legume pastures, greatly overestimated the measured steer LW; therefore, these calibrations were not useful. Cumulative steer LW predicted from a modified F.NIRS DWG calibration, which included data from the present study, was strongly correlated (R2 = 0.95) with steer LW but overestimated LW by 19-31 kg after 8 months. Additional reference data are needed to develop robust F.NIRS calibrations to encompass the diversity of Leucaena pastures of northern Australia. In conclusion, the experiment demonstrated that F.NIRS could improve understanding of diet quality and nutrient intake of cattle grazing Leucaena-grass pasture, and the relationships between nutrient supply and cattle growth.
Resumo:
The variation in liveweight gain in grazing beef cattle as influenced by pasture type, season and year effects has important economic implications for mixed crop-livestock systems and the ability to better predict such variation would benefit beef producers by providing a guide for decision making. To identify key determinants of liveweight change of Brahman-cross steers grazing subtropical pastures, measurements of pasture quality and quantity, and diet quality in parallel with liveweight were made over two consecutive grazing seasons (48 and 46 weeks, respectively), on mixed Clitoria ternatea/grass, Stylosanthes seabrana/grass and grass swards (grass being a mixture of Bothriochloa insculpta cv. Bisset, Dichanthium sericeum and Panicum maximum var. trichoglume cv. Petrie). Steers grazing the legume-based pastures had the highest growth rate and gained between 64 and 142 kg more than those grazing the grass pastures in under 12 months. Using an exponential model, green leaf mass, green leaf %, adjusted green leaf % (adjusted for inedible woody legume stems), faecal near infrared reflectance spectroscopy predictions of diet crude protein and diet dry matter digestibility, accounted for 77, 74, 80, 63 and 60%, respectively, of the variation in daily weight gain when data were pooled across pasture types and grazing seasons. The standard error of the regressions indicated that 95% prediction intervals were large (+/- 0.42-0.64 kg/head.day) suggesting that derived regression relationships have limited practical application for accurately estimating growth rate. In this study, animal factors, especially compensatory growth effects, appeared to have a major influence on growth rate in relation to pasture and diet attributes. It was concluded that predictions of growth rate based only on pasture or diet attributes are unlikely to be accurate or reliable. Nevertheless, key pasture attributes such as green leaf mass and green leaf% provide a robust indication of what proportion of the potential growth rate of the grazing animals can be achieved.
Resumo:
Background and Aims: Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines. Methods: In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes. Key Results: Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energyuse efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR. Conclusions: These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.
Resumo:
Three experiments were conducted to determine liveweight (W) gain and feed and water intake of weaned Bali cattle offered a range of feed types. In each experiment, 18 weaned entire male Bali cattle were allocated to three treatment groups in a completely randomised block design, with six replicates (animals) per treatment. The dietary treatments were: Experiment 1, native grass fed ad libitum, native grass supplemented with rice bran at 10 g dry matter (DM)/kg W.day and native grass supplemented with a mixture of rice bran and copra meal in equal proportions fed at 10 g DM/kg W.day; Experiment 2, elephant grass hay fed ad libitum, elephant grass supplemented with gliricidia at 10 g DM/kg W.day, and gliricidia fed ad libitum; and Experiment 3, corn stover fed ad libitum, corn stover supplemented with gliricidia at 10 g DM/kg W.day, and corn stover supplemented with rice bran/copra meal in equal amounts (w/w) at 10 g DM/kg W.day. Each experiment was 10 weeks in duration, consisting of a 2-week preliminary period for adaptation to diets and an 8-week experimental period for the measurement of W change, feed and water intake and digestibility of the diet. Growth rates of 6-12-month-old, entire male Bali cattle fed a range of local diets ranged from 0.10 and 0.40 kg/day. Lowest growth rates occurred when the cattle were given the basal diets of native grass (0.104 kg/day), elephant grass (0.174 kg/day) and corn stover (0.232 kg/day). With the addition of supplements such as rice bran, rice bran/copra meal or gliricidia to these basal diets liveweight gains increased to between 0.225 and 0.402 kg/day. Forage DM intake was reduced with these supplements by on average 22.6% while total DM intake was increased by an average of 10.5%. The growth rate on gliricidia alone was 0.269 kg/day and feed DM intake was 28.0 g/kg W.day. Water intake was not affected by supplement type or intake. In conclusion, inclusion of small quantities of locally available, high quality feed supplements provide small-holder farmers with the potential to increase growth rates of Bali calves from 0.1 to 0.2 kg/day, under prevailing feeding scenarios, to over 0.4 kg/day.
Resumo:
The mango industry in Australia is worth in excess of $150 million annually with the Kensington Pride (KP) cultivar capturing 60% of the domestic market. Valued by consumers for desirable taste and colour characteristics, KP has been used extensively as a parent in the Department of Agriculture and Fisheries’ (Queensland, Australia) mango breeding program with over 400 hybrid trees sharing KP as the male parent. In order to gain a better understanding of Australia’s most significant mango variety, Horticulture Innovation Australia had led an international collaboration between the Queensland Department of Agriculture and Fisheries (Australia), the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT, India) and the Beijing Genomics Institute (China) to sequence the KP genome. Preliminary de novo assembly of illumina short read sequence data suggests that the KP genome is highly heterozygous and has an estimated genome size of 407 Mb. As refinements and additional sequence data are added to the assembly, a more complete picture of the mango genome will be elucidated.