3 resultados para Future applications
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The aim of the pedigree-based genome mapping project is to investigate and develop systems for implementing marker assisted selection to improve the efficiency of selection and increase the rate of genetic gain in breeding programs. Pedigree-based whole genome marker application provides a vehicle for incorporating marker technologies into applied breeding programs by bridging the gap between marker-trait association and marker implementation. We report on the development of protocols for implementation of pedigree-based whole genome marker analysis in breeding programs within the Australian northern winter cereals region. Examples of applications from the Queensland DPI&F wheat and barley breeding programs are provided, commenting on the use of microsatellites and other types of molecular markers for routine genomic analysis, the integration of genotypic, phenotypic and pedigree information for targeted wheat and barley lines, the genomic impacts of strong selection pressure in case study pedigrees, and directions for future pedigree-based marker development and analysis.
Resumo:
Wilmot Senaratne, Bill Palmer and Bob Sutherst recently published their paper 'Applications of CLIMEX modelling leading to improved biological control' in Proceedings of the 16th Australian Weeds Conference. They looked at three examples where modern climate matching techniques using computer software produces decisions and results than might happen using previous techniques such as climadiagrams. Assessment of climatic suitability is important at various stages of a biological control project; from initial foreign exploration, to risk assessment in preparation for the release of a particular agent, through to selection of release sites that maximise the agent´s chances of initial establishment. It is now also necessary to predict potential future distributions of both target weeds and agents under climate change.
Resumo:
FRDC has commissioned a review of the role that existing and future genetic technologies may play in addressing critical challenges facing the exploitation of wild fisheries. Wild fisheries management has been assisted by genetic research for over 50 years and in Australia, this research has been largely funded by FRDC. Both fisheries management and the methods of genetic analysis have changed significantly during this time. Given these dynamics, as well as perceptions that communication between fisheries managers and geneticists has been poor in some cases, there is a strong need to reassess the ways in which genetic research can contribute to fisheries and for all stakeholders to critically examine each other's needs and capabilities.