2 resultados para Frequency-dependent selection

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fisheries managers are becoming increasingly aware of the need to quantify all forms of harvest, including that by recreational fishers. This need has been driven by both a growing recognition of the potential impact that noncommercial fishers can have on exploited resources and the requirement to allocate catch limits between different sectors of the wider fishing community in many jurisdictions. Marine recreational fishers are rarely required to report any of their activity, and some form of survey technique is usually required to estimate levels of recreational catch and effort. In this review, we describe and discuss studies that have attempted to estimate the nature and extent of recreational harvests of marine fishes in New Zealand and Australia over the past 20 years. We compare studies by method to show how circumstances dictate their application and to highlight recent developments that other researchers may find of use. Although there has been some convergence of approach, we suggest that context is an important consideration, and many of the techniques discussed here have been adapted to suit local conditions and to address recognized sources of bias. Much of this experience, along with novel improvements to existing approaches, have been reported only in "gray" literature because of an emphasis on providing estimates for immediate management purposes. This paper brings much of that work together for the first time, and we discuss how others might benefit from our experience.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding how aquatic species grow is fundamental in fisheries because stock assessment often relies on growth dependent statistical models. Length-frequency-based methods become important when more applicable data for growth model estimation are either not available or very expensive. In this article, we develop a new framework for growth estimation from length-frequency data using a generalized von Bertalanffy growth model (VBGM) framework that allows for time-dependent covariates to be incorporated. A finite mixture of normal distributions is used to model the length-frequency cohorts of each month with the means constrained to follow a VBGM. The variances of the finite mixture components are constrained to be a function of mean length, reducing the number of parameters and allowing for an estimate of the variance at any length. To optimize the likelihood, we use a minorization–maximization (MM) algorithm with a Nelder–Mead sub-step. This work was motivated by the decline in catches of the blue swimmer crab (BSC) (Portunus armatus) off the east coast of Queensland, Australia. We test the method with a simulation study and then apply it to the BSC fishery data.