5 resultados para Freitas, Mário Sérgio Teixeira de

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consumption of freshly-cut horticultural products has increased in the last few years. The principal restraint to using freshly-cut carambola is its susceptibility to tissue-browning, due to polyphenol oxidase-mediated oxidation of phenolic compounds present in the tissue. The current study investigated the susceptibility to browning of star fruit slices (Averrhoa carambola L.) of seven genotypes (Hart, Golden Star, Taen-ma, Nota-10, Malasia, Arkin, and Fwang Tung). Cultivar susceptibility to browning as measured by luminosity (L*) varied significantly among genotypes. Without catechol 0.05 M, little changes occurred on cut surface of any cultivars during 6 hour at 25 degrees C, 67% RH. Addition of catechol led to rapid browning, which was more intense in cvs. Taen-ma, Fwang Tung, and Golden Star, with reduction in L* value of 28.60%, 27.68%, and 23.29%, respectively. Browning was more intense in the center of the slices, particularly when treated with catechol, indicating highest polyphenol oxidase (PPO) concentration. Epidermal browning, even in absence of catechol, is a limitation to visual acceptability and indicates a necessity for its control during carambola processing. Care must be given to appropriate selection of cultivars for fresh-cut processing, since cultivar varied in browning susceptibility in the presence of catechol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fresh-cut carambola (Averrhoa carambola L.) has limited marketability due to cut-surface browning. The effect of chemical treatments (ascorbic acid, citric acid and Ca-EDTA), controlled atmosphere (0.4-20.3% O2) and the association of these processes was investigated. Post-cutting dip and low-oxygen atmospheres did not prevent discoloration or improve sensory and physicochemical parameters. However, ascorbic acid (0.5% and 1%) dips reduced polyphenol oxidase (PPO) activity during storage at 4.5 °C, with 1% ascorbic acid inducing the lowest activity. Although cut-surface browning of 'Maha' slices was not relevant, carambola slices treated with 1% ascorbic acid in association with 0.4% oxygen did not present significant browning or loss of visual quality for up to 12 days, 3 days longer than low oxygen alone (0.4% O2), thus, their quality can be significantly improved by combining both treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quality of fresh-cut carambola (Averrhoa carambola L) is related to many chemical and biochemical variables especially those involved with softening and browning, both influenced by storage temperature. To study these effects, a multivariate analysis was used to evaluate slices packaged in vacuum-sealed polyolefin bags, and stored at 2.5 degrees C, 5 degrees C and 10 degrees C, for up to 16 d. The quality of slices at each temperature was correlated with the duration of storage, O(2) and CO(2) concentration in the package, physical chemical constituents, and activity of enzymes involved in softening (PG) and browning (PPO) metabolism. Three quality groups were identified by hierarchical cluster analysis, and the classification of the components within each of these groups was obtained from a principal component analysis (PCA). The characterization of samples by PCA clearly distinguished acceptable and non-acceptable slices. According to PCA, acceptable slices presented higher ascorbic acid content, greater hue angles ((o)h) and final lightness (L-5) in the first principal component (PC1). On the other hand, non-acceptable slices presented higher total pectin content. PPO activity in the PC1. Non-acceptable slices also presented higher soluble pectin content, increased pectin solubilisation and higher CO(2) concentration in the second principal component (PC2) whereas acceptable slices showed lower total sugar content. The hierarchical cluster and PCA analyses were useful for discriminating the quality of slices stored at different temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond. Keating et al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands. This paper updates the earlier work by Keating et al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a “next generation” framework with improved features and capabilities that allow its use in many diverse topics.