17 resultados para Free zone
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.
Resumo:
Measurement or accurate simulation of soil temperature is important for improved understanding and management of peanuts (Arachis hypogaea L.), due to their geocarpic habit. A module of the Agricultural Production Systems Simulator Model (APSIM), APSIM-soiltemp, which uses input of ambient temperature, rainfall and solar radiation in conjunction with other APSIM modules, was evaluated for its ability to simulate surface 5 cm soil temperature in 35 peanut on-farm trials conducted between 2001 and 2005 in the Burnett region (25°36'S to 26°41'S, 151°39'E to 151°53'E). Soil temperature simulated by the APSIM-soiltemp module, from 30 days after sowing until maturity, closely matched the measured values (R2 ≥ 0.80)in the first three seasons (2001-04). However, a slightly poorer relationship (R2 = 0.55) between the observed and the simulated temperatures was observed in 2004-05, when the crop was severely water stressed. Nevertheless, over all the four seasons, which were characterised by a range of ambient temperature, leaf area index, radiation and soil water, each of which was found to have significant effects on soil temperature, a close 1:1 relationship (R2 = 0.85) between measured and simulated soil temperatures was observed. Therefore, the pod zone soil temperature simulated by the module can be generally relied on in place of measured input of soil temperature in APSIM applications, such as quantifying climatic risk of aflatoxin accumulation.
Resumo:
Hybrids between Corymbia torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson and C. citriodora subsp. variegata (F.Muell.) A.R.Bean & M.W.McDonald are used extensively to establish forestry plantations in subtropical Australia. Methods were developed for in vitro seed germination, shoot multiplication and plantlet formation that could be used to establish in vitro and ex vitro clone banks of juvenile Corymbia hybrids. Effects of sodium hypochlorite concentration and exposure time on seed contamination and germination, and effects of cytokinin and auxin concentrations on shoot multiplication and subsequent rooting, were assessed. A two-step surface sterilisation procedure, involving 70% ethanol followed by 1% sodium hypochlorite, provided almost no contamination and at least 88% germination. A novel method of cytokinin-free node culture proved most effective for in vitro propagation. Lateral bud break of primary shoots was difficult to induce by using cytokinin, but primary shoots rooted prolifically, elongated rapidly and produced multiple nodes in the absence of exogenous cytokinin. Further multiplication was obtained either by elongating lateral shoots of nodal explants in cytokinin-free medium or by inducing organogenic callus and axillary shoot proliferation with 2.2 µm benzyladenine. Plantlets were produced using an in vitro soil-less method that provided extensive rooting in sterile propagation mixture. These methods provide a means for simultaneous laboratory storage and field-testing of clones before selection and multiplication of desired genotypes.
Resumo:
Herbicide contamination from agriculture is a major issue worldwide, and has been identified as a threat to freshwater and marine environments in the Great Barrier Reef World Heritage Area in Australia. The triazine herbicides are of particular concern because of potential adverse effects, both on photosynthetic organisms and upon vertebrate development. To date a number of bioremediation strategies have been proposed for triazine herbicides, but are unlikely to be implemented due to their reliance upon the release of genetically modified organisms. We propose an alternative strategy using a free-enzyme bioremediant, which is unconstrained by the issues surrounding the use of live organisms. Here we report an initial field trial with an enzyme-based product, demonstrating that the technology is technically capable of remediating water bodies contaminated with the most common triazine herbicide, atrazine.
Resumo:
Quambalaria spp. are eucalypt leaf and shoot pathogens of growing global importance, yet virtually nothing is known regarding the manner in which they infect and colonize their hosts. A study of the infection process of Q. pitereka and Q.eucalypti on Corymbia and Eucalyptus species was thus undertaken using light, scanning and transmission electron microscopy after artificial inoculation. Conidial germination was triggered when relative humidity levels exceeded 90% and commenced within 2 h in the presence of free water. Light reduced germination but did not prevent germination from occurring. Conidial germination and hyphal growth occurred on the upper and lower leaf surfaces with penetration occurring via the stomata or wounds on the leaf surface or juvenile stems. There was no evidence of direct penetration of the host. Following penetration through the stomata, Q. pitereka and Q. eucalypti hyphae grew only intercellularly without the formation of haustoria or interaction apparatus, which is characteristic of the order Microstromatales. Instead, the presence of an interaction zone is demonstrated in this paper. Conidiophores arose through stomatal openings producing conidia 7 days after infection.
Resumo:
Context: For over 100 years, control efforts have been unable to stop rabbits causing damage to cattle production and native plants and animals on large properties in arid parts of Australia. Warren destruction by ripping has shown promise, but doubts about long-term success and the perceived expense of treating vast areas have led to this technique not being commonly used. Aims: This study measured the long-term reduction in rabbit activity and calculated the potential cost saving associated with treating just the areas where rabbits are believed to survive drought. Wealso considered whether ripping should be used in a full-scale rabbit control program on a property where rabbits have been exceptionally resilient to the influence of biological and other control measures. Methods: Rabbits were counted along spotlight transects before warrens were ripped and during the two years after ripping, in treated and untreated plots. Rabbit activity was recorded to determine the immediate and long-term impact of ripping, up to seven years after treatment. The costs of ripping warrens within different distances from drought refuge areas were calculated. Key results: Destroying rabbit warrens by ripping caused an immediate reduction in rabbit activity and there were still 98% fewer rabbits counted by spotlight in ripped plots five months after ripping. Seven years after ripping no active warrens were found in ripped plots, whereas 57% of warrens in unripped plots showed signs of rabbit activity. The cost of ripping only the areas where rabbits were likely to seek refuge from drought was calculated to be less than 4%of the cost of ripping all warrens on the property. Conclusions: Destroying rabbit warrens by ripping is a very effective way of reducing rabbit numbers on large properties in arid Australia. Ripping should commence in areas used by rabbits to survive drought. It is possible that no further ripping will be required. Implications: Strategic destruction of warrens in drought refuge areas could provide an alternative to biological control for managing rabbits on large properties in the Australian arid zone.
Resumo:
Lead (Pb) poisoning of cattle has been relatively common in Australia and sump oil has been identified as an important cause of Pb toxicity for cattle because they seem to have a tendency to drink it. Lead-free petrol has been available in Australia since 1975, so the aim of this study was to assess the current risk to cattle from drinking used automotive oils. Sump or gear box oil was collected from 56 vehicles being serviced. The low levels of Pb found suggest that the removal of leaded petrol from the Australian market as a public health measure has benefited cattle by eliminating the risk of acute poisoning from used engine oil.
Resumo:
Quantification of air emissions, in particular, from free range farms for comparison with conventional farming may demonstrate that free range farming has lower emissions. This finding may support conventional farms that are under pressure due to air quality impacts to more readily convert to free range. Industry will benefit by maintaining/increasing production and the community will benefit from fewer impacts.
Resumo:
Development of regeneration and transformation methods for genetic improvement of rootstocks for mango, avocado and citrus.
Resumo:
The aim of this small research activity (SRA) is to provide a foundation for establishing a national 'clean seed system' for sweetpotato in Papua New Guinea.
Resumo:
To evaluate the role of using forage, shade and shelterbelts in attracting birds into the range, three trials were undertaken with free range layers both on a research facility and on commercial farms. Each of the trials on the free range research facility in South Australia used a total of 120 laying hens (Hyline Brown). Birds were housed in an eco-shelter which had 6 internal pens of equal size with a free range area adjoining the shelter. The on-farm trials were undertaken on commercial free range layer farms in the Darling Downs in Southeast Queensland with bird numbers on farms ranging from 2,000-6,800 hens. The first research trial examined the role of shaded areas in the range; the second trial examined the role of forage and the third trial examined the influence of shelterbelts in the range. These treatments were compared to a free range area with no enrichment. Aggressive feather pecking was only observed on a few occasions in all of the trials due to the low bird numbers housed. Enriching the free range environment attracted more birds into the range. Shaded areas were used by 18% of the hens with a tendency (p = 0.07) for more hens to be in the paddock. When forage was provided in paddocks more control birds (55%) were observed in the range in morning than in the afternoon (30%) while for the forage treatments 45% of the birds were in the range both during the morning and afternoon. When shelterbelts were provided there was a significantly (p<0.05) higher % of birds in the range (43% vs. 24%) and greater numbers of birds were observed in areas further away from the poultry house. The results from the on-farm trials mirrored the research trials. Overall 3 times more hens used the shaded areas than the non shaded areas, with slightly more using the shade in the morning than in the afternoon. As the environmental temperature increased the number of birds using the outdoor shade also increased. Overall 17 times more hens used the shelterbelt areas than the control areas, with slightly more using the shelterbelts in the afternoon than in the morning. Approximately 17 times more birds used the forage areas compared to the control area in the corresponding range. There were 8 times more birds using a hay bale enriched area compared to the area with no hay bales. The use of forage sources (including hay bales) were the most successful method on-farm to attract birds into the range followed by shelterbelts and artificial shade. Free range egg farmers are encouraged to provide pasture, shaded areas and shelterbelts to attract birds into the free range.
Resumo:
There is a world-wide trend for deteriorating water quality and light levels in the coastal zone, and this has been linked to declines in seagrass abundance. Localized management of seagrass meadow health requires that water quality guidelines for meeting seagrass growth requirements are available. Tropical seagrass meadows are diverse and can be highly dynamic and we have used this dynamism to identify light thresholds in multi-specific meadows dominated by Halodule uninervis in the northern Great Barrier Reef, Australia. Seagrass cover was measured at similar to 3 month intervals from 2008 to 2011 at three sites: Magnetic Island (MI) Dunk Island (DI) and Green Island (GI). Photosynthetically active radiation was continuously measured within the seagrass canopy, and three light metrics were derived. Complete seagrass loss occurred at MI and DI and at these sites changes in seagrass cover were correlated with the three light metrics. Mean daily irradiance (I-d) above 5 and 8.4 mol m(-2) d(-1) was associated with gains in seagrass at MI and DI, however a significant correlation (R = 0.649, p < 0.05) only occurred at MI. The second metric, percent of days below 3 mol m(-2) d(-1), correlated the most strongly (MI, R = -0.714, p < 0.01 and DI, R = -0.859, p = <0.001) with change in seagrass cover with 16-18% of days below 3 mol m(-2) d(-1) being associated with more than 50% seagrass loss. The third metric, the number of hours of light saturated irradiance (H-sat) was calculated using literature-derived data on saturating irradiance (E-k). H-sat correlated well (R = 0.686, p <0.01; and DI, R = 0.704, p < 0.05) with change in seagrass abundance, and was very consistent between the two sites as 4 H-sat was associated with increases in seagrass abundance at both sites, and less than 4 H-sat with more than 50% loss. At the third site (GI), small seasonal losses of seagrass quickly recovered during the growth season and the light metrics did not correlate (p > 0.05) with change in percent cover, except for I-d which was always high, but correlated with change in seagrass cover. Although distinct light thresholds were observed, the departure from threshold values was also important. For example, light levels that are well below the thresholds resulted in more severe loss of seagrass than those just below the threshold. Environmental managers aiming to achieve optimal seagrass growth conditions can use these threshold light metrics as guidelines; however, other environmental conditions, including seasonally varying temperature and nutrient availability, will influence seagrass responses above and below these thresholds. (C) 2012 Published by Elsevier Ltd.
Resumo:
Loss of nitrogen in deep drainage from agriculture is an important issue for environmental and economic reasons, but limited field data is available for tropical crops. In this study, nitrogen (N) loads leaving the root zone of two major humid tropical crops in Australia, sugarcane and bananas, were measured. The two field sites, 57 km apart, had a similar soil type (a well drained Dermosol) and rainfall (∼2700 mm year -1) but contrasting crops and management. A sugarcane crop in a commercial field received 136-148 kg N ha -1 year -1 applied in one application each year and was monitored for 3 years (first to third ratoon crops). N treatments of 0-600 kg ha -1 year -1 were applied to a plant and following ratoon crop of bananas. N was applied as urea throughout the growing season in irrigation water through mini-sprinklers. Low-suction lysimeters were installed at a depth of 1 m under both crops to monitor loads of N in deep drainage. Drainage at 1 m depth in the sugarcane crops was 22-37% of rainfall. Under bananas, drainage in the row was 65% of rainfall plus irrigation for the plant crop, and 37% for the ratoon. Nitrogen leaching loads were low under sugarcane (<1-9 kg ha -1 year -1) possibly reflecting the N fertiliser applications being reasonably matched to crop requirements and at least 26 days between fertiliser application and deep drainage. Under bananas, there were large loads of N in deep drainage when N application rates were in excess of plant demand, even when applied fortnightly. The deep drainage loss of N attributable to N fertiliser, calculated by subtracting the loss from unfertilised plots, was 246 and 641 kg ha -1 over 2 crop cycles, which was equivalent to 37 and 63% of the fertiliser application for treatments receiving 710 and 1065 kg ha -1, respectively. Those rates of fertiliser application resulted in soil acidification to a depth of 0.6 m by as much as 0.6 of a unit at 0.1-0.2 m depth. The higher leaching losses from bananas indicated that they should be a priority for improved N management. Crown Copyright © 2012.
Resumo:
Grasses, legumes, saltbushes and herbs were evaluated at 6 sites in southern inland Queensland to identify potential pasture and forage plants for use on marginal cropping soils. The region experiences summer heat waves and severe winter frosts. Emphasis was on perennial plants, and native species were included. Seedlings were transplanted into the unfertilized fields in either summer or autumn to suit the growing season of plants, and watered to ensure estab-lishment. Summer-growing grasses were the most successful group, while cool season-growing perennials mostly failed. Summer legumes were disappointing, with Stylosanthes scabra and Indigofera schimperi performing best. Some lines such as I. schimperi and the Eragrostis hybrid cv. Cochise were assessed as potential weeds owing to low animal acceptance. Native Rhynchosia minima grew well at some sites and deserves more study. Cenchrus ciliaris was always easy to establish and produced the highest yields. Persistence of some Digitaria and Bothriochloa species, Eragrostis curvula and Fingerhuthia africana at specific sites was encouraging, but potential weediness needs careful assessment. Standard species were identified to represent the main forage types, such as Austrostipa scabra for cool season-growing grasses, for incorporation into future trials with new genetic materials. The early field testing protocol used should be considered for use elsewhere, if unreliable rainfall poses a high risk of establishment failure from scarce seed.