9 resultados para FoxP3, Galectin-10, autoimmunity, tolerance, CD4 CD25 regulatory T cells
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.
Resumo:
Seed cotton yield and morphological changes in leaf growth were examined under drying soil with different phosphorus (P) concentrations in a tropical climate. Frequent soil drying is likely to induce a decrease in nutrients particularly P due to reduced diffusion and poor uptake, in addition to restrictions in available water, with strong interactive effects on plant growth and functioning. Increased soil P in field and in-ground soil core studies increased the seed cotton yield and related morphological growth parameters in a drying soil, with hot (daily maximum temperature >33°C) and dry conditions (relative humidity, 25% to 35%), particularly during peak boll formation and filling stage. The soil water content in the effective rooting zone (top 0.4 m) decreased to -1.5 MPa by day 5 of the soil drying cycle. However, the increased seed cotton yield for the high-P plants was closely related to increasing leaf area with increased P supply. Plant height, leaf fresh mass and leaf area per plant were positively related to the leaf P%, which increased with increasing P supply. Low P plants were lower in plant height, leaf area, and leaf tissue water in the drying soil. Individual leaf area and the water content of the fresh leaf (ratio of dry mass to fresh mass) were significantly dependent on leaf P%.
Resumo:
Whilst the topic of soil salinity has received a substantive research effort over the years, the accurate measurement and interpretation of salinity tolerance data remain problematic. The tolerance of four perennial grass species (non-halophytes) to sodium chloride (NaCl) dominated salinity was determined in a free-flowing sand culture system. Although the salinity tolerance of non-halophytes is often represented by the threshold salinity model (bent-stick model), none of the species in the current study displayed any observable salinity threshold. Further, the observed yield decrease was not linear as suggested by the model. On re-examination of earlier datasets, we conclude that the threshold salinity model does not adequately describe the physiological processes limiting growth of non-halophytes in saline soils. Therefore, the use of the threshold salinity model is not recommended for non-halophytes, but rather, a model which more accurately reflects the physiological response observed in these saline soils, such as an exponential regression curve.
Resumo:
The specialist tingid, Carvalhotingis visenda, is a biological control agent for cat's claw creeper, Macfadyena unguis-cati (Bignoniaceae). Cat's claw creeper is an invasive liana with a wide climatic tolerance, and for biological control to be effective the tingid must survive and develop over a range of temperatures. We evaluated the effect of constant temperatures (0-45°C) on the survival and development of C. visenda. Adults showed tolerance for wider temperature ranges (0-45°C), but oviposition, egg hatching and nymphal development were all affected by both high (>30°C) and low (<20°C) temperatures. Temperatures between 20°C and 30°C are the most favourable for adult survival, oviposition, egg hatching and nymphal development. The ability of adults and nymphs to survive for a few days at high (40°C and 45°C) and low (0°C and 5°C) temperatures suggest that extreme temperature events, which usually occur for short durations (hours) in cat's claw creeper infested regions in Queensland and New South Wales states are not likely to affect the tingid population. The potential number of generations (egg to adult) the tingid can complete in a year in Australia ranged from three to eight, with more generations in Queensland than in New South Wales.
Resumo:
Drought during the pre-flowering stage can increase yield of peanut. There is limited information on genotypic variation for tolerance to and recovery from pre-flowering drought (PFD) and more importantly the physiological traits underlying genotypic variation. The objectives of this study were to determine the effects of moisture stress during the pre-flowering phase on pod yield and to understand some of the physiological responses underlying genotypic variation in response to and recovery from PFD. A glasshouse and field experiments were conducted at Khon Kaen University, Thailand. The glasshouse experiment was a randomized complete block design consisting of two watering regimes, i.e. fully-irrigated control and 1/3 available soil water from emergence to 40 days after emergence followed by adequate water supply, and 12 peanut genotypes. The field experiment was a split-plot design with two watering regimes as main-plots, and 12 peanut genotypes as sub-plots. Measurements of N-2 fixation, leaf area (LA) were made in both experiments. In addition, root growth was measured in the glasshouse experiment. Imposition of PFD followed by recovery resulted in an average increase in yield of 24 % (range from 10 % to 57 %) and 12 % (range from 2 % to 51 %) in the field and glasshouse experiments, respectively. Significant genotypic variation for N-2 fixation, LA and root growth was also observed after recovery. The study revealed that recovery growth following release of PFD had a stronger influence on final yield than tolerance to water deficits during the PFD. A combination of N-2 fixation, LA and root growth accounted for a major portion of the genotypic variation in yield (r = 0.68-0.93) suggesting that these traits could be used as selection criteria for identifying genotypes with rapid recovery from PFD. A combined analysis of glasshouse and field experiments showed that LA and N-2 fixation during the recovery had low genotype x environment interaction indicating potential for using these traits for selecting genotypes in peanut improvement programs.
Resumo:
During the past 10 years, this project tested 23 barley and 51 wheat varieties with 19 and 34 registered herbicides, respectively. It concentrated on new varieties and herbicides. The research highlighted that Northern Region (NR) wheat and barley varieties differed considerably in their sensitivity to these herbicides. Overall, 9 per cent of wheat variety x herbicide combinations and 6 per cent of barley variety x herbicide combinations had significant yield losses (3 to 38%) from herbicides at recommended rates and crop stages. In addition, 21 to 23 per cent had significant yield losses from herbicides at double rates, indicating a narrow margin of crop safety.
Resumo:
The goal of this research is to understand the function of allelic variation of genes underpinning the stay-green drought adaptation trait in sorghum in order to enhance yield in water-limited environments. Stay-green, a delayed leaf senescence phenotype in sorghum, is primarily an emergent consequence of the improved balance between the supply and demand of water. Positional and functional fine-mapping of candidate genes associated with stay-green in sorghum is the focus of an international research partnership between Australian (UQ/DAFFQ) and US (Texas A&M University) scientists. Stay-green was initially mapped to four chromosomal regions (Stg1, Stg2, Stg3, and Stg4) by a number of research groups in the US and Australia. Physiological dissection of near-isolines containing single introgressions of Stg QTL (Stg1-4) indicate that these QTL reduce water demand before flowering by constricting the size of the canopy, thereby increasing water availability during grain filling and, ultimately, grain yield. Stg and root angle QTL are also co-located and, together with crop water use data, suggest the role of roots in the stay-green phenomenon. Candidate genes have been identified in Stg1-4, including genes from the PIN family of auxin efflux carriers in Stg1 and Stg2, with 10 of 11 PIN genes in sorghum co-locating with Stg QTL. Modified gene expression in some of these PIN candidates in the stay-green compared with the senescent types has been found in preliminary RNA expression profiling studies. Further proof-of-function studies are underway, including comparative genomics, SNP analysis to assess diversity at candidate genes, reverse genetics and transformation.
Resumo:
Standards for farm animal welfare are variously managed at a national level by government-led regulatory control, by consumer-led welfare economics and co-regulated control in a partnership between industry and government. In the latter case the control of research to support animal welfare standards by the relevant industry body may lead to a conflict of interest on the part of researchers, who are dependent on industry for continued research funding. We examine this dilemma by reviewing two case studies of research published under an Australian co-regulated control system. Evidence of unsupported conclusions that are favourable to industry is provided, suggesting that researchers do experience a conflict of interest that may influence the integrity of the research. Alternative models for the management of research are discussed, including the establishment of an independent research management body for animal welfare because of its public good status and the use of public money derived from taxation, with representation from government, industry, consumers, and advocacy groups.
Resumo:
Strong statistical evidence was found for differences in tolerance to natural infections of Tobacco streak virus (TSV) in sunflower hybrids. Data from 470 plots involving 23 different sunflower hybrids tested in multiple trials over 5 years in Australia were analysed. Using a Bayesian Hierarchical Logistic Regression model for analysis provided: (i) a rigorous method for investigating the relative effects of hybrid, seasonal rainfall and proximity to inoculum source on the incidence of severe TSV disease; (ii) a natural method for estimating the probability distributions of disease incidence in different hybrids under historical rainfall conditions; and (iii) a method for undertaking all pairwise comparisons of disease incidence between hybrids whilst controlling the familywise error rate without any drastic reduction in statistical power. The tolerance identified in field trials was effective against the main TSV strain associated with disease outbreaks, TSV-parthenium. Glasshouse tests indicate this tolerance to also be effective against the other TSV strain found in central Queensland, TSV-crownbeard. The use of tolerant germplasm is critical to minimise the risk of TSV epidemics in sunflower in this region. We found strong statistical evidence that rainfall during the early growing months of March and April had a negative effect on the incidence of severe infection with greatly reduced disease incidence in years that had high rainfall during this period.