18 resultados para Fox, Henry Watson, 1817-1848.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The newly emerging Australian bat lyssavirus causes rabies like disease in bats and humans. A captive juvenile black flying fox exhibited progressive neurologic signs, including sudden aggression, vocalization, dysphagia, and paresis over 9 days and then died. At necropsy, lyssavirus infection was diagnosed by fluorescent antibody test, immunoperoxidase staining, polymerase chain reaction, and virus isolation. Eight human contacts received postexposure vaccination.
Resumo:
Grain samples from a combined intermediate and advanced stage barley breeding trial series, grown at two sites in two consecutive years were assessed for detailed grain quality and ruminant feed quality. The results indicated that there were significant genetic and environmental effects for “feed” traits as measured using grain hardness, acid detergent fibre (ADF), starch and in-sacco dry matter digestibility (ISDMD) assays. In addition, there was strong genotypic discrimination for the regressed feed performance traits, namely Net Energy (NE) and Average Daily Gain (ADG). There was considerable variation in genetic correlations for all traits based on variance from the cultivars used, sites or laboratory processing effects. There was a high level of heritability ranging from 89% to 88% for retention, 60% to 80% for protein and 56% to 68% for ADF. However, there were only low to moderate levels of heritability for the feed traits, with starch 30–39%, ISDMD 55–63%, ADF 56–68%, particle size 47–73%, 31–48% NE and ADG 44–51%. These results suggest that there were real differences in the feed performance of barleys and that selection for cattle feed quality is potentially a viable option for breeding programs.
Resumo:
In this study, 120–144 commercial varieties and breeding lines were assessed for grain size attributes including plump grain (>2.8 mm) and retention (>2.5 mm+>2.8 mm). Grain samples were produced from replicated trials at 25 sites across four years. Climatic conditions varied between years as well as between sites. Several of the trial sites were irrigated while the remaining were produced under dryland conditions. A number of the dryland sites suffered severe drought stress. The grain size data was analysed for genetic (G), environmental (E) and genotype by environment (G×E) interactions. All analyses included maturity as a covariate. The genetic effect on grain size was greater than environmental or maturity effects despite some sites suffering terminal moisture stress. The model was used to calculate heritability values for each site used in the study. These values ranged from 89 to 98% for plump grain and 88 to 96% for retention. The results demonstrated that removing the sources of non-heritable variation, such as maturity and field effects, can improve genetic estimates of the retention and plump grain fractions. By partitioning all variance components, and thereby having more robust estimates of genetic differences, plant breeders can have greater confidence in selecting barley genotypes which maintain large, stable grain size across a range of environments.
Resumo:
Barley hull plays an important role in malt and feed quality and processing. In this study we measured the variation in hull con-tent along with other grain quality traits namely, kernel discolouration and degree of pre-harvest sprouting, in a single map-ping population. There were significant (p < 0.05) genetic as well as environment effects. In addition, heritability was calculated for hull content to be 29% and 47% for two years’ data. From the analysis, major QTL markers were identified in con-trolling the expression of hull content on chromosomes 2 (2H), and 6 (6H) with significant (P < 0.05) LOD scores of 5.4 and 3.46 respectively. Minor QTLs were identified on 1 (7H), 4 (4H), 5 (1H) and 7 (5H). The region at marker Bmac310 on 4(4H) could be associated with dormancy gene SD4. A number of the QTLs also coincided with regions for either kernel discolouration or preharvest sprouting resistance (dormancy). The results indicate that variation exists for hull content, which is influenced by both growing environment as well as genetically, although the genetic variance explained less than half of the total variance. Further, hull content also impacts on other grain quality attributes including dormancy, sprouting resistance and kernel appearance.
Resumo:
Barley (Hordeum vulgare) genotypes were sequenced for polymorphism in the hardness genes, these being the three hordoindoline (hin a, hin b1 and hin b2) genes. The variation in haplotype was determined by sequencing for single nucleotide polymorphisms (SNPs). Polymorphism between each gene was then compared to grain hardness (three methods), malt quality characteristics (hot water extract and friability) and cattle feed quality. Two haplotypes were found in a set of forty barley genotypes. For hin a, two alleles were present, namely hin a1 and hin a2. However, there was no specific hin a allele that was associated with grain hardness, malt and feed quality. Barley has two hin b genes, namely hin b1 and hin b2, and the genotypes tested here had one of two alleles for each gene. However, there were no obvious effects on hardness or quality from either of these hin b alleles. Unlike wheat, where a clear relationship has been demonstrated between a number of SNPs in the wheat hardness genes and quality (soft or hard wheat), there was no such relationship for barley. Despite the wide range in hardness, malt and feed quality, there were only two haplotypes for each of the hin a, hin b1 and hin b2 genes and there was no clear relationship between grain hardness, malt or feed quality. The genotypes used in this study demonstrated that there was a low level of polymorphism in hardness genes in current commercial varieties as well as breeding lines and these polymorphisms had no impact on quality.
Resumo:
In this study, we assessed a broad range of barley breeding lines and commercial varieties by three hardness methods (two particle size methods and one crush resistance method (SKCS—Single-Kernel Characterization System), grown at multiple sites to see if there was variation in barley hardness and if that variation was genetic or environmentally controlled. We also developed near-infrared reflectance (NIR) calibrations for these three hardness methods to ascertain if NIR technology was suitable for rapid screening of breeding lines or specific populations. In addition, we used this data to identify genetic regions that may be associated with hardness. There were significant (p<0.05) genetic effects for the three hardness methods. There were also environmental effects, possibly linked to the effect of protein on hardness, i.e. increasing protein resulted in harder grain. Heritability values were calculated at >85% for all methods. The NIR calibrations, with R2 values of >90%, had Standard Error of Prediction values of 0.90, 72 and 4.0, respectively, for the three hardness methods. These equations were used to predict hardness values of a mapping population which resulted in genetic markers being identified on all chromosomes but chromosomes 2H, 3H, 5H, 6H and 7H had markers with significant LOD scores. The two regions on 5H were on the distal end of both the long and short arms. The region that showed significant LOD score was on the long arm. However, the region on the short arm associated with the hardness (hordoindoline) genes did not have significant LOD scores. The results indicate that barley hardness is influenced by both genotype and environment and that the trait is heritable, which would allow breeders to develop very hard or soft varieties if required. In addition, NIR was shown to be a reliable tool for screening for hardness. While the data set used in this study has a relatively low variation in hardness, the tools developed could be applied to breeding populations that have large variation in barley grain hardness.
Resumo:
1. The European red fox Vulpes vulpes represents a continuing threat to both livestock and native vertebrates in Australia, and is commonly managed by setting ground-level baits impregnated with 1080 (sodium fluoroacetate) poison. However, the long-term effectiveness of such control campaigns is likely to be limited due to the ability of foxes to disperse over considerable distances and to swiftly recolonize areas from where they had been removed. 2. To investigate the effectiveness of fox baiting in a production landscape, we assessed the potential for foxes to reinvade baited farm property areas within the jurisdiction of the Molong Rural Lands Protection Board (RLPB), an area of 815 000 ha on the central tablelands of New South Wales, Australia. The spatial distribution and timing of fox baiting campaigns between 1998 and 2002 was estimated from RLPB records and mapped using Geographical Information System software. The effectiveness of the control campaign was assessed on the basis of the likely immigration of foxes from non-baited farms using immigration distances calculated from published relationships between dispersal distance and home range size. 3. Few landholders undertook baiting campaigns in any given year, and the area baited was always so small that no baited property would have been sufficiently far from an unbaited property to have been immune from immigrating individuals. It is likely, therefore, that immigration onto farms negated any long-term effects of baiting operations. This study highlights some of the key deficiencies in current baiting practices in south-eastern Australia and suggests that pest management programmes should be monitored using such methods to ensure they achieve their goals.
Resumo:
The persistence of 1080 in two commonly used fox baits, Foxoff ® and chicken wingettes, was assessed under different climatic and rainfall conditions in central-western New South Wales. The rate of 1080 degradation did not change significantly between the Central Tablelands and the relatively hotter and drier environment of the Western Slopes. Loss of 1080 from wingettes was independent of the rainfall and climate conditions, with wingettes remaining lethal to foxes for, on average, 0.9 weeks. Foxoff ® baits remained lethal for longer than wingettes under all tested conditions, although their rate of degradation increased generally with increasing rainfall. As a result, areas baited with Foxoff® will require longer withholding periods for working dogs than those baited with wingettes, especially during dry periods. Wingettes may have advantages for use in sensitive areas where long-term hazards from toxic baits are undesirable. We found significant variations in 1080 concentration in freshly prepared baits that may result in efficacy, non-target and regulatory concerns for baiting campaigns. As a result, the superior quality control and shelf-stability of manufactured Foxoff® may be important criteria for favouring its use over freshly prepared bait types. However, use strategies for any bait type must ensure that foxes consume lethal doses of 1080 to avoid potential problems such as the development of learned aversion to baits or pesticide resistance.
Resumo:
The European red fox is one of Australia´s most devastating vertebrate affecting both biodiversity and agricultural production. Fox management strategies rely heavily on poisoning using baits impregnated with sodium fluoroacetate (1080). Factors such as the ability of foxes to locate bait, palatability and toxicity of bait, pattern and density of bait distribution, and cost/benefits of specific use patterns all affect the overall efficiency of management programs. It is essential to examine and refine all such factors to manage the damaging impacts of this pest species. This book examines the problems associated with management of the fox in south-eastern Australia, highlights deficiencies in ´best-practice´ baiting techniques, and provides recommendations to improve current management strategies and guide future research.
Resumo:
To determine the potential role of flying foxes in transmission cycles of Japanese encephalitis virus (JEV) in Australia, we exposed Pteropus alecto (Megachiroptera: Pteropididae) to JEV via infected Culex annulirostris mosquitoes or inoculation. No flying foxes developed symptoms consistent with JEV infection. Anti-JEV IgG antibodies developed in 6/10 flying foxes exposed to infected Cx. annulirostris and in 5/5 inoculated flying foxes. Low-level viremia was detected by real-time reverse transcriptase polymerase chain reaction in 1/5 inoculated flying foxes and this animal was able to infect recipient mosquitoes. Although viremia was not detected in any of the 10 flying foxes that were exposed to JEV by mosquito bite, two animals infected recipient mosquitoes. Likewise, an inoculated flying fox without detectable viremia infected recipient mosquitoes. Although infection rates in recipient mosquitoes were low, the high population densities in roosting camps, coupled with migratory behavior indicate that flying foxes could play a role in the dispersal of JEV.
Resumo:
Barley grain from a combined intermediate and advanced barley breeding trial was assessed for grain, feed and malt quality from two sites over two consecutive years, with the objective to ascertain relationships between these traits. Results indicated there were genetic effects for both malt (hot water extract and friability) and “feed” traits (as measured by hardness, acid detergent fibre, starch and in-sacco dry matter digestibility). The feed trait values were generally independent of the malt trait values. However, there were positive relationships between friability, hardness and protein, as well as a negative relationship between extract and husk. Extract also had a positive relationship with test weight but appeared to be independent from the feed traits. Test weight also showed little relationship to the feed traits. Heritability values ranged from low to high for almost all traits. This study details where both malt and cattle feed parameters have been compared and the results indicated that while malt and feed traits do not correlate directly, malt cultivars can exhibit excellent feed characteristics, equal to or better than feed cultivars. This data highlights the benefit of selecting for malt quality even if a breeding program would be interested at targeting specific feed quality.
Resumo:
This report provides an overview of a series of pig- and fox-baiting research projects conducted 2005–2010. It is intended to collate and summarise the outcomes of these unpublished projects, including the completed pen and field trials, and provide recommendations for future research. This review will provide a useful reference document to support further research.
Resumo:
Species of Old World fruit-bats (family Pteropodidae) have been identified as the natural hosts of a number of novel and highly pathogenic viruses threatening livestock and human health. We used GPS data loggers to record the nocturnal foraging movements of Acerodon jubatus, the Golden-crowned flying fox in the Philippines to better understand the landscape utilisation of this iconic species, with the dual objectives of pre-empting disease emergence and supporting conservation management. Data loggers were deployed on eight of 54 A. jubatus (two males and six females) captured near Subic Bay on the Philippine island of Luzon between 22 November and 2 December 2010. Bodyweight ranged from 730 g to 1002 g, translating to a weight burden of 3–4% of bodyweight. Six of the eight loggers yielded useful data over 2–10 days, showing variability in the nature and range of individual bat movements. The majority of foraging locations were in closed forest and most were remote from evident human activity. Forty-six discrete foraging locations and five previously unrecorded roost locations were identified. Our findings indicate that foraging is not a random event, with the majority of bats exhibiting repetitious foraging movements night-to-night, that apparently intact forest provides the primary foraging resource, and that known roost locations substantially underestimate the true number (and location) of roosts. Our initial findings support policy and decision-making across perspectives including landscape management, species conservation, and potentially disease emergence.
Resumo:
Zoonoses from wildlife threaten global public health. Hendra virus is one of several zoonotic viral diseases that have recently emerged from Pteropus species fruit-bats (flying-foxes). Most hypotheses regarding persistence of Hendra virus within flying-fox populations emphasize horizontal transmission within local populations (colonies) via urine and other secretions, and transmission among colonies via migration. As an alternative hypothesis, we explore the role of recrudescence in persistence of Hendra virus in flying-fox populations via computer simulation using a model that integrates published information on the ecology of flying-foxes, and the ecology and epidemiology of Hendra virus. Simulated infection patterns agree with infection patterns observed in the field and suggest that Hendra virus could be maintained in an isolated flying-fox population indefinitely via periodic recrudescence in a manner indistinguishable from maintenance via periodic immigration of infected individuals. Further, post-recrudescence pulses of infectious flying-foxes provide a plausible basis for the observed seasonal clustering of equine cases. Correct understanding of the infection dynamics of Hendra virus in flying-foxes is fundamental to effectively managing risk of infection in horses and humans. Given the lack of clear empirical evidence on how the virus is maintained within populations, the role of recrudescence merits increased attention.
Resumo:
Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors.