3 resultados para Foreign Aid
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.
Resumo:
The application of variable-number tandem repeats (VNTR) genotyping of Mycobacterium avium subsp. paratuberculosis isolates to assist in investigating incidents of bovine Johne’s disease in a low-prevalence region of Australia is described in the current study. Isolates from a response to detection of bovine Johne’s disease in Queensland were compared with strains from national and international sources. The tandem application of mycobacterial interspersed repetitive unit (MIRU) and multilocus short sequence repeats (MLSSR) genotyping identified 2 strains, 1 that infected cattle on multiple properties with trace-forward histories from a common infected property, and 1 genotypically different strain recovered from a single property. The former strain showed an identical genotype to an isolate from India. Neither strain showed a genotypic link to regions of Australia with a higher prevalence of the disease. Genotyping has indicated incursions from 2 independent sources. This intelligence has informed investigations into potential routes of entry and the soundness of ongoing control measures, and supported strategy and policy decisions regarding management of Mycobacterium avium subsp. paratuberculosis incursions for Queensland.
Resumo:
Extensive resources are allocated to managing vertebrate pests, yet spatial understanding of pest threats, and how they respond to management, is limited at the regional scale where much decision-making is undertaken. We provide regional-scale spatial models and management guidance for European rabbits (Oryctolagus cuniculus) in a 260,791 km(2) region in Australia by determining habitat suitability, habitat susceptibility and the effects of the primary rabbit management options (barrier fence, shooting and baiting and warren ripping) or changing predation or disease control levels. A participatory modelling approach was used to develop a Bayesian network which captured the main drivers of suitability and spread, which in turn was linked spatially to develop high resolution risk maps. Policy-makers, rabbit managers and technical experts were responsible for defining the questions the model needed to address, and for subsequently developing and parameterising the model. Habitat suitability was determined by conditions required for warren-building and by above-ground requirements, such as food and harbour, and habitat susceptibility by the distance from current distributions, habitat suitability, and the costs of traversing habitats of different quality. At least one-third of the region had a high probability of being highly suitable (support high rabbit densities), with the model supported by validation. Habitat susceptibility was largely restricted by the current known rabbit distribution. Warren ripping was the most effective control option as warrens were considered essential for rabbit persistence. The anticipated increase in disease resistance was predicted to increase the probability of moderately suitable habitat becoming highly suitable, but not increase the at-risk area. We demonstrate that it is possible to build spatial models to guide regional-level management of vertebrate pests which use the best available knowledge and capture fine spatial-scale processes.