2 resultados para Forckenbeck, Max von, 1821-1892.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
This paper describes the fishery and reproductive biology for Linuparus trigonus obtained from trawl fishermen operating off Queensland’s east coast, Australia. The smallest mature female lobster measured 59.8 mm CL, however, 50% maturity was reached between 80 and 85 mm CL. Brood fecundity (BF) was size dependent and ranged between 19,287 and 100,671 eggs in 32 females from 59.8 to 104.3 mm CL. The relationship was best described by the power equation BF = 0.1107*CL to the power of 2.9241 (r to the power of 2 = 0:74). Egg size ranged from 0.96 to 1.12 mm in diameter (mean = 1:02 (+or-) 0:01 mm). Egg weight and size were independent of lobster size. Length frequencies displayed multi-modal distributions.The percentage of female to male lobsters was relatively stable for small size classes (30 to 70 mm CL; 50.0 to 63.6% females), but female proportions rose markedly between 75 and 90 mm (72.2 to 85.4%) suggesting that at the onset of sexual maturity female growth rates are reduced. In size classes greater than 95 mm, males were numerically dominant. A description of the L. trigonus fishery in Queensland is also detailed.
Resumo:
The response of soybean (Glycine max) and dry bean (Phaseolus vulgaris) to feeding by Helicoverpa armigera during the pod-fill stage was studied in irrigated field cages over three seasons to determine the relationship between larval density and yield loss, and to develop economic injury levels. H. armigera intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the dry bean experiment, yield loss occurred at a rate 6.00 ± 1.29 g/HIE while the rates of loss in the three soybean experiments were 4.39 ± 0.96 g/HIE, 3.70 ± 1.21 g/HIE and 2.12 ± 0.71 g/HIE. These three slopes were not statistically different (P > 0.05) and the pooled estimate of the rate of yield loss was 3.21 ± 0.55 g/HIE. The first soybean experiment also showed a split-line form of damage curve with a rate of yield loss of 26.27 ± 2.92 g/HIE beyond 8.0 HIE and a rapid decline to zero yield. In dry bean, H. armigera feeding reduced total and undamaged pod numbers by 4.10 ± 1.18 pods/HIE and 12.88 ± 1.57 pods/HIE respectively, while undamaged seed numbers were reduced by 35.64 ± 7.25 seeds/HIE. In soybean, total pod numbers were not affected by H. armigera infestation (out to 8.23 HIE in Experiment 1) but seed numbers (in Experiments 1 and 2) and the number of seeds/pod (in all experiments) were adversely affected. Seed size increased with increases in H. armigera density in two of the three soybean experiments, indicating plant compensatory responses to H. armigera feeding. Analysis of canopy pod profiles indicated that loss of pods occurred from the top of the plant downwards, but with an increase in pod numbers close to the ground at higher pest densities as the plant attempted to compensate for damage. Based on these results, the economic injury levels for H. armigera on dry bean and soybean are approximately 0.74 HIE and 2.31 HIE/m2, respectively (0.67 and 2.1 HIE/row-m for 91 cm rows).