80 resultados para Foliar disease
em eResearch Archive - Queensland Department of Agriculture
Resumo:
A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24Sr24/ locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18Lr34/ region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.
Resumo:
A new foliar disease was observed on baby lima bean (Phaseolus lunatus) in fields across western New York State, USA. The disease occurred in 10 fields with variable incidence and severity. Symptoms were initially necrotic, tan spots on leaves with red to reddish brown irregular margins that coalesced to encompass the entire leaf and cause abscission. Pycnidia were observed within the lesions. Isolations from diseased leaves yielded several pycnidial forming fungi, including a Didymella species. These isolates were characterized by morphology and sequencing of multiple reference genes (internal transcribed spacer (ITS), partial actin, β- tubulin (tub2), translation elongation factor 1-α (TEF), 28S rDNA large subunit (LSU), rpb2, and calmodulin). A four gene phylogeny (ITS, tub2, LSU, and rpb2) showed that the isolates from baby lima bean belonged to a well-supported clade that contained the type culture of Didymella americana. Pathogenicity of the isolates on three commonly grown cultivars of baby lima bean was confirmed. Symptoms that developed on inoculated plants were similar to those observed on diseased plants in the field. This is the first report of D. americana on baby lima bean.
Resumo:
The emerging disease program seeks to gain information on the distribution of cereal pathogens\pathotypes and potential for outbreaks across the norther region and options for their control. It is looking for an improved understanding of varietal (APR) reaction to stripe rust (YR) in prevailing weather conditions and in the face of climate change. Replicated field trials are used in the evaluation of varietal, cultural and chemical management of YR. Best management practice packages are disseminated to stake holders, including a YR predictive tool.
Resumo:
Phosphonate fungicides are used widely in the control of diseases caused by Phytophthora cinnamomi Rands. For the most part phosphonate is seen as a safe to use on crops with phytotoxicity rare. However, recent research has shown that phosphonate has detrimental effects on the floral biology of some indigenous Australian plants. Since phosphonate fungicides are regularly used for the control of Phytophthora root rot in avocados, research was carried out to study the translocation of phosphonate fungicide in 'Hass' trees and any effects on their floral biology. Field-grown trees were sprayed with 0, 0.06 or 0.12 M mono-dipotassium phosphonate (pH 7.2) at summer flush maturity, floral bud break or anthesis. Following treatment, phosphonic acid concentrations were determined in leaves, roots, inflorescence rachi and flowers and in vitro pollen germination and pollen tube growth studied. Phosphonic acid concentration in the roots and floral parts was related to their sink strength at the respective times of application with concentration in roots highest (36.9.mg g±1) after treatment at summer flush maturity and in flowers (234.7 mg g±1) after treatment during early anthesis. Phosphonate at >0.03 M was found to be significantly phytotoxic to in vitro pollen germination and pollen tube growth. However, this rate gave a concentration far in excess of that measured in plant tissues following standard commercial applications of mono-dipotassium phosphonate fungicide. There was a small effect on pollen germination and pollen tube growth when 0.06 and 0.12 M mono-dipotassium phosphonate was applied during early anthesis. However, under favourable pollination and fruit set conditions it is not expected to have commercial impact on tree yield. However, there may be detrimental commercial implications from phosphonate sprays at early anthesis if unfavourable climatic conditions for pollination and fruit set subsequently occur. A commercial implication from this study is that phosphonic acid root concentrations can be elevated and maintained with strategic foliar applications of phosphonate fungicide timed to coincide with peaks in root sink strength. These occur at the end of the spring and summer flushes when shoot growth is relatively quiescent. Additional foliar applications may be advantageous in under high disease-pressure situations but where possible should be timed to minimize overlap with other significant growth events in the tree such as rapid inflorescence, and fruit development and major vegetative flushing.
Resumo:
Alternaria leaf blight is the most prevalent disease of cotton in northern Australia. A trial was conducted at Katherine Research Station, Northern Territory, Australia, to determine the effects of foliar application of potassium nitrate (KNO3) on the suppression of Alternaria leaf blight of cotton. Disease incidence, severity and leaf shedding were assessed at the bottom (1-7 nodes), middle (8-14 nodes) and the top (15+ nodes) of plants at weekly intervals from 7 July to 22 September 2004. Disease incidence, severity and shedding at the middle canopy level were significantly higher for all treatments than those from bottom and top canopies. Foliar KNO3, applied at 13 kg/ha, significantly (P < 0.05) reduced the mean disease incidence, severity and leaf shedding assessed during the trial period. KNO 3 significantly (P < 0.001) reduced the disease severity and leaf shedding at the middle canopy level. Almost all leaves in the middle canopy became infected in the first week of July in contrast to infection levels of 50-65% at the bottom and top of the canopy. Disease severity and leaf shedding in the middle canopy were significantly (P < 0.05) lower in KNO 3-treated plots than the control plots from the second and third weeks of July to the second and third weeks of August. This study demonstrates that foliar application of KNO3 may be effective in reducing the effect of Alternaria leaf blight of cotton in northern Australia.
Resumo:
The isolation frequency of Microsphaeropsis sp. in spring in association with necrotic lesions on leaves in Tasmanian pyrethrum (Tanacetum cinerariifolium) fields has increased substantially since first identification in 2001. Examination of morphological features and sequencing of the internal transcribed spacer region (ITS) resulted in the identification of a new species, herein described as Microsphaeropsis tanaceti sp. nov. The pathogenicity of three M. tanaceti isolates to two pyrethrum cultivars was confirmed by inoculating glasshouse-grown plants in three experiments. No significant differences in the susceptibility of the two cultivars to infection by M. tanaceti were found. Symptoms were tan-coloured spots which coalesced around the margins of the leaves. Therefore, the name 'tan spot' is proposed for this new disease of pyrethrum. The sensitivity of seven M. tanaceti isolates to difenoconazole and azoxystrobin, commonly used fungicides for the management of foliar diseases in spring, was assessed under in vitro conditions. Sensitivity testing for difenoconazole was conducted using a mycelial growth assay on potato dextrose agar, whilst testing for sensitivity to azoxystrobin used a conidial germination assay on water agar. Microsphaeropsis tanaceti was found to be more sensitive to azoxystrobin than difenoconazole, with complete inhibition of conidial germination at concentrations above 0.625 µg a.i. mL-1. By comparison, concentrations of 50 µg a.i. difenoconazole mL-1 or greater were required for significant inhibition of mycelial growth. It therefore appears likely that there is currently some control of tan spot as a result of the use of azoxystrobin and to a lesser extent, difenoconazole, for the control of other diseases.
Resumo:
This chapter provides an in-depth review of important diseases affecting avocado production throughout the world. The importance of understanding the interaction of plant pathogens with their avocado host in order for the development of disease management options is also discussed.
Resumo:
Tomato big bud phytoplasma (16SrII-E group), a widely distributed phytoplasma in Australia, was detected in celery, capsicum and chicory plants from southern Queensland, Australia in February 2002.
Resumo:
The fungus causing anthracnose disease in mango, Colletotrichum gloeosporioides, (C g.), infects immature fruit early in the season, then enters a long latent phase. After harvest, when fruit start to ripen, the latency breaks and the fungus ramifies through the peel and pulp tissues causing black disease lesions. The breaking of pathogen latency in ripening mango fruit has been correlated with decreasing concentrations of the endogenous antifungal resorcinol compounds (Droby et al., 1986). The level of these antifungal resorcinols vary among mango cultivars (Droby et a1 , 1986). Controlling diseases by managing natural resistance of fruit to fungal attack could minimize the use of pesticides, which have become of major public concern on health and environmental grounds. The plant resistance activator benzo(l,2,3)thiadiazole-7-carbothioic acid S-methyl ester (trade name Bion®) has been widely reported as an effective inducer of systemic resistance. For example, Bion® was reported to induce pathogenesis-related proteins (PR proteins) and stimulate plant defence in peas (Dann and Deverall, 2000) and roses (Suo and Leung, 2001). However, until now, there is no information about the role of Bion® in activation of mango (cv. Kensington Pride) fruit resistance to anthracnose disease. The aim of this research is to determine the effect of resistance activators on defence responses of mango fruit to anthracnose disease.
Resumo:
Near-ripe ‘Kensington Pride’ mango (Mangifera indica L.) fruit with green skin colour generally return lower wholesale and retail prices. Pre-harvest management, especially nitrogen (N) nutrition, appears to be a major causal factor. To obtain an understanding of the extent of the problem in the Burdekin district (dry tropics; the major production area in Australia), green mature ‘Kensington Pride’ mango fruit were harvested from ten orchards and ripened at 20 ± 0.5 O C. Of these orchards, 70% produced fruit with more than 25% of the skin surface area green when ripe. The following year, the effect of N application on skin colour and other quality attributes was investigated on three orchards, one with a high green (HG) skin problem and two with a low green (LG) skin problem. N was applied at pre-flowering and at panicle emergence at the rate of 0,75,150,300 g per tree (soil applied) or 50 g per tree as foliar N for the HG orchard, and 0,150,300,450 g per tree (soil applied) or 50 g per tree (foliar) for the LG orchards. In all orchards the proportion of green colour on the ripe fruit was significantly (P<0.05) higher with soil applications of 150 g N or more per tree. Foliar sprays resulted in a higher proportion of green colour than the highest soil treatment in the HG orchard, but not in the LG orchards. Anthracnose disease severity was significantly (P<0.05) higher with 300 g of N per tree or foliar treatment in the HG orchard, compared with no additional N. Thus, N can reduce mango fruit quality by increasing green colour and anthracnose disease in ripe fruit.
Resumo:
Continuous cultivation and cereal cropping of southern Queensland soils previously supporting native vegetation have resulted in reduced soil nitrogen supply, and consequently decreased cereal grain yields and low grain protein. To enhance yields and protein concentrations of wheat, management practices involving N fertiliser application, with no-tillage and stubble retention, grain legumes, and legume leys were evaluated from 1987 to 1998 on a fertility-depleted Vertosol at Warra, southern Queensland. The objective of this study was to examine the effect of lucerne in a 2-year lucerne–wheat rotation for its nitrogen and disease-break benefits to subsequent grain yield and protein content of wheat as compared with continuous wheat cropping. Dry matter production and nitrogen yields of lucerne were closely correlated with the total rainfall for October–September as well as March–September rainfall. Each 100 mm of total rainfall resulted in 0.97 t/ha of dry matter and 26 kg/ha of nitrogen yield. For the March–September rainfall, the corresponding values were 1.26 t/ha of dry matter and 36 kg/ha of nitrogen yield. The latter values were 10% lower than those produced by annual medics during a similar period. Compared with wheat–wheat cropping, significant increases in total soil nitrogen were observed only in 1990, 1992 and 1994 but increases in soil mineralisable nitrogen were observed in most years following lucerne. Similarly, pre-plant nitrate nitrogen in the soil profile following lucerne was higher by 74 kg/ha (9–167 kg N/ha) than that of wheat–wheat without N fertiliser in all years except 1996. Consequently, higher wheat grain protein (7 out of 9 seasons) and grain yield (4 out of 9 seasons) were produced compared with continuous wheat. There was significant depression in grain yield in 2 (1993 and 1995) out of 9 seasons attributed to soil moisture depletion and/or low growing season rainfall. Consequently, the overall responses in yield were lower than those of 50 kg/ha of fertiliser nitrogen applied to wheat–wheat crops, 2-year medic–wheat or chickpea–wheat rotation, although grain protein concentrations were higher following lucerne. The incidence and severity of the soilborne disease, common root rot of wheat caused by Bipolaris sorokiniana, was generally higher in lucerne–wheat than in continuous wheat with no nitrogen fertiliser applications, since its severity was significantly correlated with plant available water at sowing. No significant incidence of crown rot or root lesion nematode was observed. Thus, productivity, which was mainly due to nitrogen accretion in this experiment, can be maintained where short duration lucerne leys are grown in rotations with wheat.
Resumo:
Pumpkin plants (Cucurbita maxima and C. moschata) with pumpkin yellow leaf curl (PYLC) disease were observed at production fields in Queensland, Western Australia and the Northern Territory. Diseased samples were positive for a phytoplasma indistinguishable from Candidatus Phytoplasma australiense, the phytoplasma associated with papaya dieback and strawberry lethal yellows. This is the first time Candidatus Phytoplasma australiense has been detected in pumpkin.
Resumo:
Occurrence and Importance: Anthracnose is presently recognized as the most important field and post-harvest disease of mango worldwide (Ploetz and Prakasli, 1997). It is the major disease limiting fruit production in all countries where mangoes are grown, especially where high humidity prevails during the cropping season. The post-harvest phase is the most damaging and economically significant phase of the disease worldwide. It directly affects the marketable fruit rendering it worthless. This phase is directly linked to the field phase where initial infection usually starts on young twigs and leaves and spreads to the flowers, causing blossom blight and destroying the inflorescences and even preventing fruit set.
Resumo:
Twelve years ago our understanding of ratoon stunting disease (RSD) was confined almost exclusively to diagnosis of the disease and control via farm hygiene, with little understanding of the biology of the interaction between the causal agent (Leifsonia xyli subsp. xyli) and the host plant sugarcane (Saccharum spp. hybrids). Since then, research has focused on developing the molecular tools to dissect L. xyli subsp. xyli, so that better control strategies can be developed to prevent losses from RSD. Within this review, we give a brief overview of the progression in research on L. xyli subsp. xyli and highlight future challenges. After a brief historical background on RSD, we discuss the development of molecular tools such as transformation and transposon mutagenesis and discuss the apparent lack of genetic diversity within the L. xyli subsp. xyli world population. We go on to discuss the sequencing of the genome of L. xyli subsp. xyli, describe the key findings and suggest some future research based on known deficiencies that will capitalise on this tremendous knowledge base to which we now have access.
Resumo:
Pineapple mealybug wilt-associated virus 1 (PMWaV-1), 2 (PMWaV-2) and -3 (PMWaV-3) have been detected in Australian commercial pineapple crops, along with a previously undescribed ampelovirus, for which the name Pineapple mealybug wilt-associated virus 5 (PMWaV-5) is proposed. Partial sequences extending from open reading frame 1b through to the heat shock protein homologue were obtained for PMWaV-1, -3 and -5. Phylogenetic analyses of selected regions of these sequences indicated that PMWaV-5 is a distinct species and most closely related to PMWaV-1. The amino acid sequence variation observed in the RNA-dependent RNA polymerase region of PMWaV-1 isolates was 95.8–98.4% and of PMWaV-3 isolates was 92.2–99.5%. In surveys of mealybug wilt disease (MWD) affected crops, none of the four viruses was clearly associated with the disease at all survey sites. A statistically significant association (P < 0.001) between the presence of PMWaV-2 and symptoms was observed at one survey site (site 3), but the virus was at a low incidence at the remaining three survey sites. By contrast, although PMWaV-1 and -3 were equally distributed between symptomless and MWD-affected plants at site 3, there was a statistically significant (P < 0.001) association between each of these two viruses and MWD at sites 1 and 4. At site 2, there was a statistically significant (P < 0.001) association only between PMWaV-3 and MWD. PMWaV-1 was the most commonly found of the four viruses and conversely PMWaV-5 was only occasionally found. Australian isolates of PMWaV-1, -2 and -3 were transmitted by the mealybug species Dysmicoccus brevipes.