19 resultados para Fitzgerald, Dennis
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The ‘Biomes of Australian Soil Environments’ (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function.
Resumo:
Fusarium species associated with crown rot were isolated and identified from 409 wheat, barley or durum wheat crops from the eastern Australian grain belt between 1996 and 1999. Fusarium pseudograminearum was almost the only species isolated from crops in Queensland and New South Wales. F. pseudograminearum was also the most common species in Victoria and South Australia, but F. culmorum was frequently isolated in these states. F. culmorum accounted for more than 70% of isolates from the Victorian high-rainfall (> 500 mm) region and the South-East region of South Australia. F. culmorum comprised 18% of isolates from the Victorian medium-rainfall (350-500 mm) region, and 7% of isolates from each of the Victorian low-rainfall region and the Mid-North region of South Australia. F. avenaceum, F. crookwellense and F. graminearum were isolated very infrequently. The proportion of F. culmorum among isolates of Fusarium from districts in Victoria and South Australia was strongly correlated with climatic conditions around the end of the growing season, especially with rainfall in November.
Resumo:
Variable-rate technologies and site-specific crop nutrient management require real-time spatial information about the potential for response to in-season crop management interventions. Thermal and spectral properties of canopies can provide relevant information for non-destructive measurement of crop water and nitrogen stresses. In previous studies, foliage temperature was successfully estimated from canopy-scale (mixed foliage and soil) temperatures and the multispectral Canopy Chlorophyll Content Index (CCCI) was effective in measuring canopy-scale N status in rainfed wheat (Triticum aestivum L.) systems in Horsham, Victoria, Australia. In the present study, results showed that under irrigated wheat systems in Maricopa, Arizona, USA, the theoretical derivation of foliage temperature unmixing produced relationships similar to those in Horsham. Derivation of the CCCI led to an r2 relationship with chlorophyll a of 0.53 after Zadoks stage 43. This was later than the relationship (r2 = 0.68) developed for Horsham after Zadoks stage 33 but early enough to be used for potential mid-season N fertilizer recommendations. Additionally, ground-based hyperspectral data estimated plant N (g kg)1) in Horsham with an r2 = 0.86 but was confounded by water supply and N interactions. By combining canopy thermal and spectral properties, varying water and N status can potentially be identified eventually permitting targeted N applications to those parts of a field where N can be used most efficiently by the crop.
Resumo:
Laboratory and field data reported in the literature are confusing with regard to “adequate” protection thresholds for borate timber preservatives. The confusion is compounded by differences in termite species, timber species and test methodology. Laboratory data indicate a borate retention of 0.5% mass/mass (m/m) boric acid equivalent (BAE) would cause >90% termite mortality and restrict mass loss in test specimens to ≤5%. Field data generally suggest that borate retentions appreciably >0.5% m/m BAE are required. We report two field experiments with varying amounts of untreated feeder material in which Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) responses to borate-treated radiata (Monterey) pine, Pinus radiata D. Don, were measured. The apparently conflicting results between laboratory and field data are explained by the presence or absence of untreated feeder material in the test environment. In the absence of untreated feeder material, wood containing 0.5% BAE provided adequate protection from Coptotermes sp., whereas in the presence of untreated feeder material, increased retentions were required. Furthermore, the retentions required increased with increased amounts of susceptible material present. Some termites, Nasutitermes sp. and Mastotermes darwiniensis Froggatt, for example, are borate-tolerant and borate timber preservatives are not a viable management option with these species. The lack of uniform standards for termite test methodology and assessment criteria for efficacy across the world is recognized as a difficulty with research into the performance of timber preservatives with termites. The many variables in laboratory and field assays make “prescriptive” standards difficult to recommend. The use of “performance” standards to define efficacy criteria (“adequate” protection) is discussed.
Resumo:
The highly persistent cyclodiene (organochlorine) insecticides (aldrin, dieldrin, chlordane and heptachlor), the main termiticides used in Australia for 30 years, were withdrawn from use in most of Australia on 30 June 1995. Alternative strategies for subterranean termite management in buildings and other structures had been under development, well before this withdrawal. Here we focus on these and subsequent developments in subterranean termite management, relevant to Queensland, including a national survey, relevant building regulations, approvals and changes in the Australian Standards on termite management. Developments including a national training and competency-based-licensing system for pest managers, insurance of dwellings against termite damage and several alternative termite management strategies are discussed. An integrated approach to termite management is the likely direction for the future in Australia, minimising reliance on chemical sprays and drenches. There will be an increased need for physical barriers in improved building design and reliable preventative and remedial treatments involving bait technology. The need for research on termite biology and, in particular, foraging behavior is emphasized yet again.
Resumo:
We previously found high carotenoid levels in Karat and other Micronesian bananas, indicating potential importance for alleviating vitamin A deficiency and other nutritionally related health problems in the Federated States of Micronesia. Past work focused on carotenoid and mineral analyses, whereas here we investigated 16 cultivars (most not previously analysed) for a broader micronutrient profile, including seven vitamins. Karat carotenoid levels were higher than in previous analyses, confirming Karat as exceptionally carotenoid-rich. We identified an additional 10 carotenoid-rich cultivars, expanding the range having potential for alleviating vitamin A deficiency. A striking finding is the high riboflavin level in Karat, including high levels of uncharacterized flavonoids. Niacin and α-tocopherol are at levels that may contribute importantly to dietary intake within normal patterns of consumption. These data present a more complete basis for promoting the nutritional benefits of these banana cultivars where they are consumed in the Pacific, and potential benefits for promoting elsewhere.
Resumo:
Nitrogen (N) is the largest agricultural input in many Australian cropping systems and applying the right amount of N in the right place at the right physiological stage is a significant challenge for wheat growers. Optimizing N uptake could reduce input costs and minimize potential off-site movement. Since N uptake is dependent on soil and plant water status, ideally, N should be applied only to areas within paddocks with sufficient plant available water. To quantify N and water stress, spectral and thermal crop stress detection methods were explored using hyperspectral, multispectral and thermal remote sensing data collected at a research field site in Victoria, Australia. Wheat was grown over two seasons with two levels of water inputs (rainfall/irrigation) and either four levels (in 2004; 0, 17, 39 and 163 kg/ha) or two levels (in 2005; 0 and 39 kg/ha N) of nitrogen. The Canopy Chlorophyll Content Index (CCCI) and modified Spectral Ratio planar index (mSRpi), two indices designed to measure canopy-level N, were calculated from canopy-level hyperspectral data in 2005. They accounted for 76% and 74% of the variability of crop N status, respectively, just prior to stem elongation (Zadoks 24). The Normalised Difference Red Edge (NDRE) index and CCCI, calculated from airborne multispectral imagery, accounted for 41% and 37% of variability in crop N status, respectively. Greater scatter in the airborne data was attributable to the difference in scale of the ground and aerial measurements (i.e., small area plant samples against whole-plot means from imagery). Nevertheless, the analysis demonstrated that canopy-level theory can be transferred to airborne data, which could ultimately be of more use to growers. Thermal imagery showed that mean plot temperatures of rainfed treatments were 2.7 °C warmer than irrigated treatments (P < 0.001) at full cover. For partially vegetated fields, the two-Dimensional Crop Water Stress Index (2D CWSI) was calculated using the Vegetation Index-Temperature (VIT) trapezoid method to reduce the contribution of soil background to image temperature. Results showed rainfed plots were consistently more stressed than irrigated plots. Future work is needed to improve the ability of the CCCI and VIT methods to detect N and water stress and apply both indices simultaneously at the paddock scale to test whether N can be targeted based on water status. Use of these technologies has significant potential for maximising the spatial and temporal efficiency of N applications for wheat growers. ‘Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.
Resumo:
We tested the capacity of several published multispectral indices to estimate the nitrogen nutrition of wheat canopies grown under different levels of water supply and plant density and derived a simple canopy reflectance index that is greatly independent of those factors. Planar domain geometry was used to account for mixed signals from the canopy and soil when the ground cover was low. A nitrogen stress index was developed, which adjusts shoot %N for plant biomass and area, thereby accounting for environmental conditions that affect growth, such as crop water status. The canopy chlorophyll content index (CCCi) and the modified spectral ratio planar index (mSRPi) could explain 68 and 69% of the observed variability in the nitrogen nutrition of the crop as early as Zadoks 33, irrespective of water status or ground cover. The CCCi was derived from the combination of 3 wavebands 670, 720 and 790 nm, and the mSRPi from 445, 705 and 750 nm, together with broader bands in the NIR and RED. The potential for their spatial application over large fields/paddocks is discussed.
Resumo:
Arthropods are known to use silk for a number of different purposes including web construction, shelter building, leaf tying, construction of pupal cocoons, and as a safety line when dislodged from a substrate (Alexander, 1961; Fitzgerald, 1983; Common, 1990). Across the arthropods, silk displays a diversity of material properties and chemical constituents and is produced from glands with different evolutionary origins (Craig, 1997). Among insects, larval Lepidoptera are prolific producers of silk. Because many lepidopteran larvae are pests, an ability to interfere with silk production or, at the very least, an understanding of how silk is used, could provide new options for pest control. After testing many known fluorescent dyes, we found that Fluorescent Brightener 28 (also known as Calcofluor White M2R) (Sigma-Aldrich Pty Ltd, Sydney, NSW, Australia), an optical brightener used in the textile industry, binds to arthropod silk in a simple staining reaction, causing it to fluoresce under ultraviolet (UV) light. Such brighteners have also been used in insect gut content analysis (Schlein & Muller, 1995; Hugo et al., 2003). Here we describe the method of visualizing arthropod silk on plant surfaces, using as a model the thin, barely visible, single strands of silk produced by Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) neonates.
Resumo:
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.
Resumo:
We investigated the effect of wax-treated and biocide-free wood specimens against three different termite species. A laboratory no-choice test with Reticulitermes banyulensis Clément was carried out in Valencia (Spain) under Mediterranean conditions for eight weeks. Scots pine sapwood (Pinus sylvestris L.) fully impregnated with distinct waxes was used. Two field trials were conducted with Coptotermes acinaciformis (Froggatt) and Mastotermes darwiniensis Froggatt in northern Queensland (Australia) with wax-impregnated beech (Fagus sylvatica L.) for 16 weeks. All three subterranean termites are of major economic importance in their respective regions. The results indicated that feeding pressure by the termites was sufficient within all trials for a valid test. Wax-impregnated Scots pine sapwood was classified as durable. No termites survived the test. The results showed an aging process under submersion conditions, which lead to a classification of moderately durable. The paraffin treatment showed good termite resistance under both test procedures, and was classified as durable. The Australian field trials showed a decreased mass loss of wax-treated beech, in which an amide wax showed excellent termite resistance. The results indicate a clear dependence of the termite resistance on the type and ratio of wax used and the feeding preferences of the specific termite species.
Resumo:
Four field trials were conducted with wood modified with dimethyloldihydroxy-ethyleneurea (DMDHEU) in contact with subterranean termites. Trials 1 to 3 were conducted with Coptotermes acinaciformis (Froggatt); 1 and 2 in south-east Queensland, and 3 in northern Queensland, Australia. Trial 4 was conducted in northern Queensland with Mastotermes darwiniensis (Froggatt). Four timber species (Scots pine, beech, Slash pine and Spotted gum) and two levels (1.3 M and 2.3 M) of DMDHEU were used. The tests were validated. DMDHEU successfully prevented damage by C. acinaciformis in south-east Queensland, but not in northern Queensland. It also did not protect the wood against M. darwiniensis. Except for beech in trial 4, DMDHEU led to reduced mass losses caused by termite attack compared to the unmodified feeder stakes. Slash pine (in trials 1 and 3) and Spotted gum (in trial 1) presented low mass losses. Modification of Scots pine was more effective against termite damage than the modification of beech.
Resumo:
Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.
Resumo:
This analysis of all carapace length measurements collected between 1989 and 2009, during scientific surveys, describes the variation of tropical rock lobster, Panulirus ornatus, somatic growth in Torres Strait. Multiple models of carapace length frequency distributions were compared by maximum likelihood to determine which hypotheses were most supported by the data. The best model assumed sex and cohort-specific Von Bertalanffy's parameters. These estimates are consistent with results derived from tagging data collected in the 1980s and provide new information on parameters' uncertainty. In the past two decades, growth rates have fluctuated inter-annually without displaying any distinctive trend. Associated uncertainties are large, suggesting that sampling will need to be intensified in order to detect an effect of climate change.
Resumo:
Two field trials were conducted with untreated coconut wood (“cocowood”) of varying densities against the subterranean termites Coptotermes acinaciformis (Froggatt) and Mastotermes darwiniensis Froggatt in northern Queensland, Australia. Both trials ran for 16 weeks during the summer months. Cocowood densities ranged from 256 kg/m3 to 1003 kg/m3, and the test specimens were equally divided between the two termite trial sites. Termite pressure was high at both sites where mean mass losses in the Scots pine sapwood feeder specimens were: 100% for C. acinaciformis and 74.7% for M. darwiniensis. Termite species and cocowood density effects were significant. Container and position effects were not significant. Mastotermes darwiniensis fed more on the cocowood than did C. acinaciformis despite consuming less of the Scots pine than did C. acinaciformis. Overall the susceptibility of cocowood to C. acinaciformis and M. darwiniensis decreases with increasing density, but all densities (apart from a few at the high end of the density range) could be considered susceptible, particularly to M. darwiniensis. Some deviations from this general trend are discussed as well as implications for the utilisation of cocowood as a building resource.