13 resultados para Fire insurance.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Quantifying the potential spread and density of an invading organism enables decision-makers to determine the most appropriate response to incursions. We present two linked models that estimate the spread of Solenopsis invicta Buren (red imported fire ant) in Australia based on limited data gathered after its discovery in Brisbane in 2001. A stochastic cellular automaton determines spread within a location (100 km by 100 km) and this is coupled with a model that simulates human-mediated movement of S. invicta to new locations. In the absence of any control measures, the models predict that S. invicta could cover 763 000–4 066 000 km2 by the year 2035 and be found at 200 separate locations around Australia by 2017–2027, depending on the rate of spread. These estimated rates of expansion (assuming no control efforts were in place) are higher than those experienced in the USA in the 1940s during the early invasion phases in that country. Active control efforts and quarantine controls in the USA (including a concerted eradication attempt in the 1960s) may have slowed spread. Further, milder winters, the presence of the polygynous social form, increased trade and human mobility in Australia in 2000s compared with the USA in 1940s could contribute to faster range expansion.
Resumo:
The paper revisits estimates of cost/benefit for eradication in Australia provided in 2001 which were based largely on information about a US ecosystem. The study had two major components; spread modelling using a cellular automation model provided by Joe Scanlan and an impact analysis undertaken by the remaining authors. The revised figures provided in this study increased the damage estimate from $2.8 billion to $45 billion and the benefit-cost ratio of eradication efforts improved from 25:1 to 390:1.
Resumo:
This guide applies to spotted gum - ironbark forests and woodlands. Topics covered in the guide include: *The spotted gum - ironbark ecosystem; *General effects of burning practices; *Understandinng the effects of fire management; *Timber production; *Livestock grazing production; *Balancing production and biodiversity; *Fire management planning for the property; *Recommendtaions for landholders. These guidelines have been prepared for spotted gum - ironbark forests and woodlands and are not necessarily applicable to other forest and woodland ecosystems. The recommendations provided in these guidelines should be used as a guide only.
Resumo:
It is at the population level that an invasion either fails or succeeds. Lantana camara L. (Verbenaceae) is a weed of great significance in Queensland Australia and globally but its whole life-history ecology is poorly known. Here we used 3 years of field data across four land use types (farm, hoop pine plantation and two open eucalyptus forests, including one with a triennial fire regime) to parameterise the weed’s vital rates and develop size-structured matrix models. Lantana camara in its re-colonization phase, as observed in the recently cleared hoop pine plantation, was projected to increase more rapidly (annual growth rate, λ = 3.80) than at the other three sites (λ 1.88–2.71). Elasticity analyses indicated that growth contributed more (64.6 %) to λ than fecundity (18.5 %) or survival (15.5 %), while across size groups, the contribution was of the order: juvenile (19–27 %) ≥ seed (17–28 %) ≥ seedling (16–25 %) > small adult (4–26 %) ≥ medium adult (7–20 %) > large adult (0–20 %). From a control perspective it is difficult to determine a single weak point in the life cycle of lantana that might be exploited to reduce growth below a sustaining rate. The triennial fire regime applied did not alter the population elasticity structure nor resulted in local control of the weed. However, simulations showed that, except for the farm population, periodic burning could work within 4–10 years for control of the weed, but fire frequency should increase to at least once every 2 years. For the farm, site-specific control may be achieved by 15 years if the biennial fire frequency is tempered with increased burning intensity.
Resumo:
We used a long-term fire experiment in south-east Queensland, Australia, to determine the effects of frequent prescribed burning and fire exclusion on understorey vegetation (<7.5 m) richness and density in Eucalyptus pilularis forest. Our study provided a point in time assessment of the standing vegetation and soil-stored vegetation at two experimental sites with treatments of biennial burning, quadrennial burning since 19711972 and no burning since 1969. Vegetation composition, density and richness of certain plant groups in the standing and soil-stored vegetation were influenced by fire treatments. The density of resprouting plants <3 m in height was higher in the biennially burnt treatment than in the unburnt treatment, but resprouters 37.5 m in height were absent from the biennial burning treatment. Obligate seeder richness and density in the standing vegetation was not significantly influenced by the fire treatments, but richness of this plant group in the seed bank was higher in the quadrennial treatment at one site and in the long unburnt treatment at the other site. Long unburnt treatments had an understorey of rainforest species, while biennial burning at one site and quadrennial burning at the other site were associated with greater standing grass density relative to the unburnt treatment. This difference in vegetation composition due to fire regime potentially influences the flammability of the standing understorey vegetation. Significant interactions between fire regime and site, apparent in the standing and soil-stored vegetation, demonstrate the high degree of natural variability in vegetation community responses to fire regimes.
Resumo:
Fire is an important driver of nutrient cycling in savannas. Here, we determined the impact of fire frequency on total and soluble soil nitrogen (N) pools in tropical savanna. The study sites consisted of 1-ha experimental plots near Darwin, Australia, which remained unburnt for at least 14 years or were burnt at 1-, 2- or 5-year intervals over the past 6 years. Soil was analysed from patches underneath tree canopies and in inter-canopy patches at 1, 12, 28, 55 and 152 days after fire. Patch type had a significant effect on all soil N pools, with greater concentrations of total and soluble (nitrate, ammonium, amino acids) N under tree canopies than inter-canopy patches. The time since the last fire had no significant effect on N pools. Fire frequency similarly did not affect total soil N but it did influence soluble soil N. Soil amino acids were most prominent in burnt savanna, ammonium was highest in infrequently burnt (5-year interval) savanna and nitrate was highest in unburnt savanna. We suggest that the main effect of fire on soil N relations occurs indirectly through altered tree-grass dynamics. Previous studies have shown that high fire frequencies reduce tree cover by lowering recruitment and increasing mortality. Our findings suggest that these changes in tree cover could result in a 30% reduction in total soil N and 1060% reductions in soluble N pools. This finding is consistent with studies from savannas globally, providing further evidence for a general theory of patchiness as a key driver of nutrient cycling in the savanna biome.
Resumo:
Wildfire represents a major risk to pine plantations. This risk is particularly great for young plantations (generally less than 10 m in height) where prescribed fire cannot be used to manipulate fuel biomass, and where flammable grasses are abundant in the understorey. We report results from a replicated field experiment designed to determine the effects of two rates of glyphosate (450 g L–1) application, two extents of application (inter-row only and inter-row and row) with applications being applied once or twice, on understorey fine fuel biomass, fuel structure and composition in south-east Queensland, Australia. Two herbicide applications (~9 months apart) were more effective than a once-off treatment for reducing standing biomass, grass continuity, grass height, percentage grass dry weight and the density of shrubs. In addition, the 6-L ha–1 rate of application was more effective than the 3-L ha–1 rate of application in periodically reducing grass continuity and shrub density in the inter-rows and in reducing standing biomass in the tree rows, and application in the inter-rows and rows significantly reduced shrub density relative to the inter-row-only application. Herbicide treatment in the inter-rows and rows is likely to be useful for managing fuels before prescribed fire in young pine plantations because such treatment minimised tree scorch height during prescribed burns. Further, herbicide treatments had no adverse effects on plantation trees, and in some cases tree growth was enhanced by treatments. However, the effectiveness of herbicide treatments in reducing the risk of tree damage or mortality under wildfire conditions remains untested.
Resumo:
Beef cattle grazing is the dominant land use in the extensive tropical and sub-tropical rangelands of northern Australia. Despite the considerable knowledge on land and herd management gained from both research and practical experience, the adoption of improved management is limited by an inability to predict how changes in practices and combinations of practices will affect cattle production, economic returns and resource condition. To address these issues, past Australian and international research relating to four management factors that affect productivity and resource condition was reviewed in order to identify key management principles. The four management factors considered were stocking rates, pasture resting, prescribed fire, and fencing and water point development for managing grazing distribution. Four management principles for sound grazing management in northern Australia were formulated as follows: (1) manage stocking rates to meet goals for livestock production and land condition; (2) rest pastures to maintain them in good condition or to restore them from poor condition to increase pasture productivity; (3) devise and apply fire regimes that enhance the condition of grazing land and livestock productivity while minimising undesirable impacts; and (4) use fencing and water points to manipulate grazing distribution. Each principle is supported by several more specific guidelines. These principles and guidelines, and the supporting research on which they are based, are presented.
Resumo:
Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every two years (2yrB), burning every four years (4yrB) and no burning (NB). C:N ratios in freshly fallen litter were 29-42% higher and C:P ratios were 6-25% lower for 2yrB than NB during decomposition, with correspondingly lower 2yrB N:P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N:P ratios were similar to the overall litter N:P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2yrB than NB while 4yrB was generally intermediate between 2yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2yrB (72±2% mass remaining at the end of experiment) than for 4yrB (59±3%) and NB (62±3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2yrB) decoupled N and P cycling, as manifested in litter C:N:P stoichiometry and in microbial biomass N:P ratio and enzymatic activities. These data indicate that fire induced a transient shift to N-limited ecosystem conditions during the post-fire recovery phase. This article is protected by copyright. All rights reserved.
Resumo:
In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta.
Resumo:
Retrospective identification of fire severity can improve our understanding of fire behaviour and ecological responses. However, burnt area records for many ecosystems are non-existent or incomplete, and those that are documented rarely include fire severity data. Retrospective analysis using satellite remote sensing data captured over extended periods can provide better estimates of fire history. This study aimed to assess the relationship between the Landsat differenced normalised burn ratio (dNBR) and field measured geometrically structured composite burn index (GeoCBI) for retrospective analysis of fire severity over a 23 year period in sclerophyll woodland and heath ecosystems. Further, we assessed for reduced dNBR fire severity classification accuracies associated with vegetation regrowth at increasing time between ignition and image capture. This was achieved by assessing four Landsat images captured at increasing time since ignition of the most recent burnt area. We found significant linear GeoCBI–dNBR relationships (R2 = 0.81 and 0.71) for data collected across ecosystems and for Eucalyptus racemosa ecosystems, respectively. Non-significant and weak linear relationships were observed for heath and Melaleuca quinquenervia ecosystems, suggesting that GeoCBI–dNBR was not appropriate for fire severity classification in specific ecosystems. Therefore, retrospective fire severity was classified across ecosystems. Landsat images captured within ~ 30 days after fire events were minimally affected by post burn vegetation regrowth.
Resumo:
Of the five known incursions of the highly invasive Red Imported Fire Ant in Australia, two are regarded to have been eradicated. As treatment efforts continue, and the programme evolves and new tools become available, eradication is still considered to be feasible for the remaining Red Imported Fire Ant populations with long-term commitment and support.
Resumo:
Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0–10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2–C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem.