13 resultados para Filters and filtration

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to investigate the productivity and functionality of sand filters stocked with marine worms for wastewater treatment at mariculture facilities. Medium bedding sand which is commonly available in coastal sedimentary deposits and nereidid polychaetes (Perinereis nuntia and P. helleri) from Moreton Bay in southeast Queensland were combined and studied in down-flow sand filtration beds. This combination appears to provide a new option for brackish wastewater treatment whereby the activities of the worms help to prevent sand filters from blocking with organic debris and their biomass offers a valuable by-product. Phytoplankton-rich pond waters percolating through sand-worm beds were reliably treated in several useful ways: suspended solids and chlorophyll a levels were consistently reduced by >50% by the process, and nutrients were converted into bio-available dissolved forms. Dissolved oxygen, redox and pH levels were also lowered significantly by the process. Water treatment rates of approx 1500 L m-2 d-1 were routinely achieved. P. nuntia appeared more suitable than P. helleri for stocking directly into sand filtration beds as nectochaetes, but generally exhibited slower growth. Survival and growth were influenced by stocking density. Sand-filter beds stocked with juvenile worms and fed only with eutrophic pond water demonstrated polychaete production capacities in the order of 300-400 g m-2 (eg. P. helleri: 328 g m-2 in 16 weeks). These results show how nereidid polychaetes can be reliably produced within simple, low-maintenance sand filters, and provide data necessary for the functional integration of this novel wastewater treatment system into contemporary seafood farming systems.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Summary Prototype sand-worm filtration beds were constructed at two prawn farms and one fish farm to assess and demonstrate their polychaete (marine worm) production and wastewater remediation capacities at semi-commercial scale. Wastewater treatment properties were monitored and worms produced were assessed and either sold for bait or used by the farms’ hatcheries as broodstock (prawn or fish breeder) feed. More than 34 megalitres of prawn- and fish-pond water was beneficially treated in the 116-319-d trial. The design of the polychaete-assisted sand filters (PASFs) constructed at each farm affected their water handling rates, which on average ranged from 315 to 1000 L m-2 d-1 at the three farms. A low profile design incorporating shallow bunded ponds made from polyethylene liner and timber stakes provided the easiest method of construction. This simple design applied at broad scale facilitated the highest quantities of treated water and the greatest worm production. Designs with higher sides increased the head pressure above the sand bed surface, thus increasing the amount of water that could be treated each day. Most water qualities were affected in a similar way to that demonstrated in the previous tank trials: dissolved oxygen, pH, total suspended solids and chlorophyll a levels were all consistently significantly lowered as pond water percolated through the sand bed, and dissolved forms of nitrogen and phosphorus were marginally increased on several occasions. However, unlike the previous smaller-scale tank trials, total nitrogen (TN) and total phosphorus (TP) levels were both significantly lowered by these larger-scale PASFs. The reasons for this are still unclear and require further research. Maximum TN and TP removals detected in the trial were 48.8% and 67.5%, respectively, and average removals (in unfed beds) at the three farms ranged from 20.0 to 27.7% for TN and from 22.8 to 40.8% for TP. Collectively, these results demonstrate the best suspended solids, chlorophyll and macronutrient removal capacities so far reported for any mariculture wastewater treatment methodology to date. Supplemental feeding of PASFs with fish meal was also investigated at one farm as a potential means of increasing their polychaete biomass production. Whilst fed beds produced higher biomass (152 ± 35 g m-2) compared with unfed beds (89 ± 17 g m-2) after 3.7 months of operation, the low number of replicates (2) prevented statistically significant differences from being demonstrated for either growth or survival. At harvest several months later, worm biomass production was estimated to be similar to, or in slight excess of, previously reported production levels (300-400 g m-2). Several qualities of filtered water appear to have been affected by supplemental feeding: it appeared to marginally lower dissolved oxygen and pH levels, and increased the TN and TP levels though not so much to eliminate significant beneficial water treatment effects. Periodic sampling during an artificial-tide demonstrated the tendency for treated-water quality changes during the first hour of filtration. Total nitrogen and ammonia peaked early in the tidal flow and then fell to more stable levels for the remainder of the filtration period. Other dissolved nutrients also showed signs of this sand-bed-flushing pattern, and dissolved oxygen tended to climb during the first hour and become more stable thereafter. These patterns suggest that the routine sampling of treated water undertaken at mid-inflow during the majority of the wider study would likely have overestimated the levels of TN and dissolved nutrients discharged from the beds, and hence underestimated the PASFs treatment efficacies in this regard. Analyses of polychaete biomass collected from each bed in the study revealed that the worms were free from contamination with the main prawn viruses that would create concerns for their feeding to commercial prawn broodstock in Australia. Their documented proximal and nutritional contents also provide a guide for hatchery operators when using live or frozen stock. Their dry matter content ranged from 18.3 to 22.3%, ash ranged from 10.2 to 14.0%, gross energy from 20.2 to 21.5 MJ kg-1, and fat from 5.0 to 9.2%. Their cholesterol levels ranged from 0.86 to 1.03% of dry matter, whilst total phospholipids range from 0.41 to 0.72%. Thirty-one different fatty acids were present at detectable (≥0.005% of dry matter) levels in the sampled worm biomass. Palmitic acid was by far the most prevalent fatty acid detected (1.21 ± 0.18%), followed by eicosapentaenoic (EPA) (0.48 ± 0.03%), stearic (0.46 ± 0.04%), vaccenic (0.38 ± 0.05%), adrenic (0.35 ± 0.02%), docosadienoic (0.28 ± 0.02%), arachidonic (AA) (0.22 ± 0.01%), palmitoleic (0.20 ± 0.04%) and 23 other fatty acids with average contents of less than 0.2% of dry matter. Supplemental feeding with fish meal at one farm appeared to increase the docosahexaenoic acid (DHA) content of the worms considerably, and modify the average AA : EPA : DHA from 1.0 : 2.7 : 0.3 to 1.0 : 2.0 : 1.1. Consistent with previous results, the three most heavily represented amino acids in the dry matter of sampled worms were glutamic acid (8.5 ± 0.2%), aspartic acid (5.5 ± 0.1%) and glycine (4.9 ± 0.5%). These biomass content results suggest that worms produced in PASF systems are well suited to feeding to prawn and fish broodstock, and provide further strong evidence of the potential to modify their contents for specific nutritional uses. The falling wild-fishery production of marine bloodworms in Queensland is typical of diminishing polychaete resources world-wide and demonstrates the need to develop sustainable production methods here and overseas. PASF systems offer the dual benefits of wastewater treatment for environmental management and increased productivity through a valuable secondary crop grown exclusively on waste nutrients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports on the use of naturally occurring F-specific coliphages, as well as spiked MS-2 phage, to evaluate a land-based effluent treatment/reuse system and an effluent irrigation scheme. Both the natural phages and the spiked MS-2 phage indicated that the effluent treatment/reuse system (FILTER - Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) achieved a reduction in phage levels over the treatment system by one to two log10. FILTER reduced natural F-specific phage numbers from around 103 to below 102 100-ml-1 and the spiked phage from 105 to around 104 100-ml-1 (incoming compared with outgoing water). In the effluent irrigation scheme, phage spiked into the holding ponds dropped from 106 to 102 100-ml-1 after 168 h (with no detectable levels of natural F-specific phage being found prior to spiking). Only low levels of the spiked phage (102 gm-1) could be recovered from soil irrigated with phage-spiked effluent (at 106 phage 100 ml-1) or from fruits (around 102 phage per fruit) that had direct contact with soil which had been freshly irrigated with the same phage-spiked effluent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agent selection for prickly acacia has been largely dictated by logistics and host specificity. Given that detailed ecological information is available on this species in Australia, we propose that it is possible to select agents based on agent efficacy and desired impact on prickly acacia demography. We propose to use the 'plant genotype' and 'climatic' similarities as filters to identify areas for future agent exploration; and plant response to herbivory and field host range as 'predictive' filters for agent prioritisation. Adopting such a systematic method that incorporates knowledge from plant population ecology and plant-herbivore interactions makes agent selection decisions explicit and allow more rigorous evaluations of agent performance and better understanding of success and failure of agents in weed biological control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proposed simplified Integrated Sugar Production Process (ISPP) using membrane technology would allow the sugar industry to produce new product streams and higher quality mill sugar with increased sugar extraction efficiency. Membrane filtration technology has proven to be a technically sound process to increase sugar quality. However commercial viability has been uncertain partly because the benefits to crystallisation and sugar quality have not outweighed the increased processing cost. This simplified ISPP produces additional value-added liquid streams to make the membrane fractionation process more financially viable and improve the profitability of sugar manufacture. An experimental study used pilot scale membrane fractionation of clarified mill juice confirmed the technical feasibility of separating inorganic salt and antioxidant rich fractions from cane juice. The paper presents details on the compositions of the liquid streams along with their potential uses, values and challenges in getting these products out to market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding plant demography and plant response to herbivory is critical to the selection of effective weed biological control agents. We adopt the metaphor of 'filters' to suggest how agent prioritisation may be improved to narrow our choices down to those likely to be most effective in achieving the desired weed management outcome. Models can serve to capture our level of knowledge (or ignorance) about our study system and we illustrate how one type of modelling approach (matrix models) may be useful in identifying the weak link in a plant life cycle by using a hypothetical and an actual weed example (Parkinsonia aculeata). Once the vulnerable stage has been identified we propose that studying plant response to herbivory (simulated and/or actual) can help identify the guilds of herbivores to which a plant is most likely to succumb. Taking only potentially effective agents through the filter of host specificity may improve the chances of releasing safe and effective agents. The methods we outline may not always lead us definitively to the successful agent(s), but such an empirical, data-driven approach will make the basis for agent selection explicit and serve as testable hypotheses once agents are released.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane filtration technology has been proven to be a technically sound process to improve the quality of clarified cane juice and subsequently to increase the productivity of crystallisation and the quality of sugar production. However, commercial applications have been hindered because the benefits to crystallisation and sugar quality have not outweighed the increased processing costs associated with membrane applications. An 'Integrated Sugar Production Process (ISPP) Concept Model' is proposed to recover more value from the non-sucrose streams generated by membrane processing. Pilot scale membrane fractionation trials confirmed the technical feasibility of separating high-molecular weight, antioxidant and reducing sugar fractions from cane juice in forms suitable for value recovery. It was also found that up to 40% of potassium salts from the juice can be removed by membrane application while removing the similar amount of water with potential energy saving in subsequent evaporation. Application of ISPP would allow sugar industry to co-produce multiple products and high quality mill sugar while eliminating energy intensive refining processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medium bedding sand which is commonly available in coastal sedimentary deposits, and a marine polychaete-worm species from Moreton Bay recently classified as Perinereis helleri (Nereididae), were deployed in a simple low-maintenance sand filter design that potentially has application at large scale. Previous work had shown that this physical and biological combination can provide a new option for saline wastewater treatment, since the worms help to prevent sand filter blocking with organic debris and offer a profitable by-product. To test the application of this new concept in a commercial environment, six 1.84 m2 Polychaete-assisted sand filters were experimentally tested for their ability to treat wastewater from a semi-intensive prawn culture pond. Polychaetes produced exclusively on the waste nutrients that collected in these gravity-driven sand filters were assessed for their production levels and nutritional contents. Water parameters studied included temperature, salinity, pH, dissolved oxygen (DO), oxidation/ reduction potential (redox), suspended solids, chlorophyll a, biological oxygen demand (BOD), and common forms of nitrogen and phosphorus. Pond water which had percolated through the sand bed had significantly lower pH, DO and redox levels compared with inflow water. Suspended solids and chlorophyll a levels were consistently more than halved by the process. Reductions in BOD appeared dependant on regular subsurface flows. Only marginal reductions in total nitrogen and phosphorus were documented, but their forms were altered in a potentially useful way: dissolved forms (ammonia and orthophosphate) were generated by the process, and this remineralisation also seemed to be accentuated by intermittent flow patterns. Flow rates of approximately 1,500 L m-2 d-1 were achieved suggesting that a 1 ha polychaete bed of this nature could similarly treat the discharge from a 10 ha semi-intensive prawn farm. Sixteen weeks after stocking sand beds with one-month-old P. helleri, over 3.6 kg of polychaete biomass (wet weight) was recovered from the trial. Production on a sand bed area basis was 328 g m-2. Similar (P>0.05) overall biomass production was found for the two stocking densities tested (2000 and 6000 m-2; n = 3), but survival was lower and more worms were graded as small (<0.6 g) when produced at the higher density (28.2 ± 1.5 % and approx. 88 %, respectively) compared with the lower density (46.8 ± 4.4 % and approx. 76 %, respectively). When considered on a weight for weight basis, about half of the worm biomass produced was generally suitable for use as bait. The nutritional contents of the worms harvested were analysed for different stocking densities and graded sizes. These factors did not significantly affect their percentages of dry matter (DM) (18.23 ± 0.57 %), ash (19.77 ± 0.80 % of DM) or gross energy 19.39 ± 0.29 MJ kg-1 DM) (n = 12). Although stocking density did not affect the worms’ nitrogen and phosphorus contents, small worms had a higher mean proportion of nitrogen and phosphorus (10.57 ± 0.17 % and 0.70 ± 0.01 % of DM, respectively) than large worms (9.99 ± 0.12 % and 0.65 ± 0.01 % of DM, respectively) (n = 6). More lipid was present in large worms grown at the medium density (11.20 ± 0.19 %) compared with the high density (9.50 ± 0.31 %) and less was generally found in small worms (7.1-7.6 % of DM). Mean cholesterol and total phospholipid levels were 5.24 ± 0.15 mg g-1 and 13.66 ± 2.15 mg g-1 DM, respectively (n = 12). Of the specific phospholipids tested, phosphatidyl-serine or sphingomyelin were below detection limits (<0.05 mg g-1), whilst mean levels of phosphatidyl-ethanolamine, phosphatidyl-inositol, phosphatidyl-choline and lysophosphatidyl-choline were 6.89 ± 1.09, 0.89 ± 0.26, 4.04 ± 1.17 and 1.84 ± 0.37 mg g-1, respectively (n = 12). Culture density generally had a more pronounced effect on phospholipid contents than did size of worms. By contrast, worm size had a more pronounced effect on total fatty acid contents, with large worms containing significantly higher (P<0.001) levels on a DM basis (46.88 ± 2.46 mg g-1) than smaller worms (27.76 ± 1.28 mg g-1). A very broad range of fatty acids were detected with palmitic acid being the most heavily represented class (up to 14.23 ± 0.49 mg g-1 DM or 27.28 ± 0.22 % of total fatty acids). Other heavily represented classes included stearic acid (7.4-8.8 %), vaccenic acid (6.8-7.8 %), arachidonic acid (3.5-4.4 %), eicosapentaenoic acid (9.9-13.8 %) and docosenoic acid (5.7-7.0 %). Stocking density did not affect (P>0.05) the levels of amino acids present in polychaete DM, but there was generally less of each amino acid tested on a weight per weight basis in large worms than in small worms. This difference was significant (P<0.05) for the most heavily represented classes being glutamic acid (73-77 mg g-1), aspartic acid (50-54 mg g-1), and glycine (46-53 mg g-1). These results demonstrate how this polychaete species can be planted and sorted at harvest according to various strategies aimed at providing biomass with specific physical and nutritional qualities for different uses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the trial is to assess the growth and production level of cultured Polychaetes, and wastewater remediation properties of Polychaete beds at a commercial prawn farm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proposed simplified Integrated Sugar Production Process (ISPP) using membrane technology would allow the sugar industry to produce new product streams and higher quality mill sugar with increased sugar extraction efficiency. Membrane filtration technology has proven to be a technically sound process to increase sugar quality. However commercial viability has been uncertain partly because the benefits to crystallisation and sugar quality have not outweighed the increased processing cost. This simplified ISPP produces additional value-added liquid streams to make the membrane fractionation process more financially viable and improve the profitability of sugar manufacture. An experimental study used pilot scale membrane fractionation of clarified mill juice confirmed the technical feasibility of separating inorganic salt and antioxidant rich fractions from cane juice. The paper presents details on the compositions of the liquid streams along with their potential uses, values and challenges in getting these products out to market. This paper was presented at the 2010 Australian Society of Sugar Cane Technologists annual conference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the nutritional composition of the intertidal marine polychaete Perinereis helleri (Nereididae)when artificially cultured in sand filters treating mariculture wastewater. Moisture levels in harvested P. helleri ranged from 758 to 855 g kg1, and ash, from 23 to 61 g kg1 wet matter (WM). Stocking density and graded size after harvest significantly affected their composition. Higher total lipid contents were found in large (>0.6 g) P. helleri(16–19 g kg1 WM) and those grown at the lowest density(1000 m2: 18 g kg 1 WM) than in small (≤0.6 g) ones (14 g kg1 WM) and those grown at the highest densities (4000–6000 m2: 13–16 g kg1 WM). Several fatty acids within a very broad profile (some 30 identified) reflected this pattern, yet their ARA/EPA/DHA ratios were relatively unaffected. Feeding the polychaete-assisted sand filters (PASF) with fish meal to increase worm biomass productivity significantly increased their DHA content. Other components (e.g. protein, phospholipids, cholesterol, carbohydrate, amino acids, nitrogen, minerals and bromophenols) and nutritional factors (e.g. maturity, feeding seaweed and endemic shrimp viral content) were also investigated. Results suggest that PASF-produced P. helleri have a well-balanced nutritional profile for penaeid shrimp and fish broodstock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil testing is the most widely used tool to predict the need for fertiliser phosphorus (P) application to crops. This study examined factors affecting critical soil P concentrations and confidence intervals for wheat and barley grown in Australian soils by interrogating validated data from 1777 wheat and 150 barley field treatment series now held in the BFDC National Database. To narrow confidence intervals associated with estimated critical P concentrations, filters for yield, crop stress, or low pH were applied. Once treatment series with low yield (<1 t/ha), severe crop stress, or pHCaCl2 <4.3 were screened out, critical concentrations were relatively insensitive to wheat yield (>1 t/ha). There was a clear increase in critical P concentration from early trials when full tillage was common compared with those conducted in 1995–2011, which corresponds to a period of rapid shift towards adoption of minimum tillage. For wheat, critical Colwell-P concentrations associated with 90 or 95% of maximum yield varied among Australian Soil Classification (ASC) Orders and Sub-orders: Calcarosol, Chromosol, Kandosol, Sodosol, Tenosol and Vertosol. Soil type, based on ASC Orders and Sub-orders, produced critical Colwell-P concentrations at 90% of maximum relative yield from 15 mg/kg (Grey Vertosol) to 47 mg/kg (Supracalcic Calcarosols), with other soils having values in the range 19–27 mg/kg. Distinctive differences in critical P concentrations were evident among Sub-orders of Calcarosols, Chromosols, Sodosols, Tenosols, and Vertosols, possibly due to differences in soil properties related to P sorption. However, insufficient data were available to develop a relationship between P buffering index (PBI) and critical P concentration. In general, there was no evidence that critical concentrations for barley would be different from those for wheat on the same soils. Significant knowledge gaps to fill to improve the relevance and reliability of soil P testing for winter cereals were: lack of data for oats; the paucity of treatment series reflecting current cropping practices, especially minimum tillage; and inadequate metadata on soil texture, pH, growing season rainfall, gravel content, and PBI. The critical concentrations determined illustrate the importance of recent experimental data and of soil type, but also provide examples of interrogation pathways into the BFDC National Database to extract locally relevant critical P concentrations for guiding P fertiliser decision-making in wheat and barley.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anaerobic digestion is a viable on-site treatment technology for rich organic waste streams such as food waste and blackwater. In contrast to large-scale municipal wastewater treatment plants which are typically located away from the community, the effluent from any type of on-site system is a potential pathogenic hazard because of the intimacy of the system to the community. The native concentrations of the pathogen indicators Escherichia coli, Clostridium perfringens and somatic coliphage were tracked for 30 days under stable operation (organic loading rate (OLR) = 1.8 kgCOD m(-3) day(-1), methane yield = 52% on a chemical oxygen demand (COD) basis) of a two-stage laboratory-scale digester treating a mixture of food waste and blackwater. E. coli numbers were reduced by a factor of 10(6.4) in the thermophilic stage, from 10(7.5+/-0.3) to 10(1.1+/-0.1) cfu 100 mL(-1), but regenerated by a factor of 10(4) in the mesophilic stage. Neither the thermophilic nor mesophilic stages had any significant impact on C. perfringens concentrations. Coliphage concentrations were reduced by a factor of 10(1.4) across the two stages. The study shows that anaerobic digestion only reduces pathogen counts marginally but that counts in effluent samples could be readily reduced to below detection limits by filtration through a 0.22 microm membrane, to investigate membrane filtration as a possible sanitation technique.