4 resultados para Fibre-cement
em eResearch Archive - Queensland Department of Agriculture
Fibre Transfer in Merino Ewes Mated with Damara, Merino or Dorper Rams in Central Western Queensland
Resumo:
Considerable concern has been expressed by the Australian wool industry regarding the contamination of the clip with coloured or kempy fibres from imported breeds of sheep. As part of the evaluation of imported sheep meat breeds in western Queensland, a study is examining fibre growth and transfer of fibres and the potential to cause physical contamination of Merino fleeces. The breeds of concern in this study are the Damara, a fat-tailed breed with a hairy, coloured fleece and the Dorper which has both pigmented fibres and a kempy fleece which is shed cyclically. Three groups of Merino 27 ewes were mated to Merino, Damara and Dorper rams respectively and fibre transfer to the Merino ewes during mating, from lambing to weaning and during grazing, assessed. Both a direct field method and a laboratory method (Hatcher 1995) are being used. Those measured by direct count were measured immediately after joining and 2, 4 and 8 weeks subsequently. and the other ewes were shorn and sampled and measured in the laboratory using the dark fibre detector. This paper presents preliminary findings of those ewes monitored by the direct field method. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.
Resumo:
Fibre diameter can vary dramatically along a wool staple, especially in the Mediterranean environment of southern Australia with its dry summers and abundance of green feed in spring. Other research results have shown a very low phenotypic correlation between fibre diameter grown between seasons. Many breeders use short staples to measure fibre diameter for breeding purposes and also to promote animals for sale. The effectiveness of this practice is determined by the relative response to selection by measuring fibre traits on a full 12 months wool staple as compared to measuring them only on part of a staple. If a high genetic correlation exists between the part record and the full record, then using part records may be acceptable to identify genetically superior animals. No information is available on the effectiveness of part records. This paper investigated whether wool growth and fibre diameter traits of Merino wool grown at different times of the year in a Mediterranean environment, are genetically the same trait, respectively. The work was carried out on about 7 dyebanded wool sections/animal.year, on ewes from weaning to hogget age, in the Katanning Merino resource flocks over 6 years. Relative clean wool growth of the different sections had very low heritability estimates of less than 0.10, and they were phenotypically and genetically poorly correlated with 6 or 12 months wool growth. This indicates that part record measurement of clean wool growth of these sections will be ineffective as indirect selection criteria to improve wool growth genetically. Staple length growth as measured by the length between dyebands, would be more effective with heritability estimates of between 0.20 and 0.30. However, these measurements were shown to have a low genetic correlation with wool grown for 12 months which implies that these staple length measurements would only be half as efficient as the wool weight for 6 or 12 months to improve total clean wool weight. Heritability estimates of fibre diameter, coefficient of variation of fibre diameter and fibre curvature were relatively high and were genetically and phenotypically highly correlated across sections. High positive phenotypic and genetic correlations were also found between fibre diameter, coefficient of variation of fibre diameter and fibre curvature of the different sections and similar measurements for wool grown over 6 or 12 months. Coefficient of variation of fibre diameter of the sections also had a moderate negative phenotypic and genetic correlation with staple strength of wool staples grown over 6 months indicating that coefficient of variation of fibre diameter of any section would be as good an indirect selection criterion to improve stable strength as coefficient of variation of fibre diameter for wool grown over 6 or 12 months. The results indicate that fibre diameter, coefficient of variation of fibre diameter and fibre curvature of wool grown over short periods of time have virtually the same heritability as that of wool grown over 12 months, and that the genetic correlation between fibre diameter, coefficient of variation of fibre diameter and fibre curvature on part and on full records is very high (rg > 0.85). This indicates that fibre diameter, coefficient of variation of fibre diameter and fibre curvature on part records can be used as selection criteria to improve these traits. However, part records of greasy and clean wool growth would be much less efficient than fleece weight for wool grown over 6 or 12 months because of the low heritability of part records and the low genetic correlation between these traits on part records and on wool grown for 12 months.
Resumo:
Extract from the executive summary: A collaborative scoping research project to identify plant oil species with potential value in the production of fibre composite resins and assess their suitability to Queensland’s regions has been conducted by QDPI&F, USQ and Loc Composites Pty Ltd. The use of plant-oil based resins in the production of fibre composites will contribute to the Queensland economy through establishing sustainable high technology building products from renewable sources while decreasing the reliance of resin production on fossil fuels. The main objective of this project was to indentify a suite of plant oil species that show agronomic adaptability to the Australian environment (e.g. climate, soils) and economic viability of extracting plant oils for resin production within a highly competitive supply and demand production market.
Resumo:
Optimal matching of species to sites is required for a sustainable hardwood plantation industry in the subtropics. This paper reports the performance and adaptation of 60 taxa (species, provenances and hybrids) across two rainfall zones and a range of soil types in southern Queensland. Specifically, performance of taxa is compared across five replicated taxon–site matching trials at age 6 y. Three trials are in a 1000-mm y–1 rainfall zone of the Wide Bay region near Miriam Vale and two in a drier (about 750 mm y–1) rainfall zone near Kingaroy in the South Burnett region. In the higher-rainfall zone, the taxa with the fastest growth in the three trials at age 6 y were Corymbia citriodora subsp. variegata Woondum provenance, which ranked 1st, 6th and 5th respectively; E. longirostrata Coominglah provenance, ranked 3rd, 2nd and 3rd; and two sources of E. grandis, Copperlode provenance (ranked 4th and 1st) and SAPPI seed orchard (ranked 6th and 4th), which were planted in only two of the three trials. Similarly, in the lower-rainfall zone, E. grandis and its hybrids appear promising from the 6-y growth data., This excellent early growth, however, has not continued in either rainfall zone, with these taxa, 8 y after planting, now showing signs of stress and mortality. Based on trial results in these two rainfall zones, the taxon that appears the most promising for sustainable plantation development with high average annual volume index values and low incidence of borer attack is Corymbia citriodora subsp. variegata (6.7 m³ ha–1). Eucalyptus grandis and E. longirostrata both have better average annual volume indexes (8.2 m³ ha–1 and 7.4 m³ ha–1 respectively) but are very susceptible to borer attack. The current and long-term productivity and sustainability of plantation forestry in these rainfall zones is discussed. Further, the implications of predicted climate change (particularly reduced rainfall) for growing trees for fibre production and carbon sequestration are explored.