7 resultados para Fern, Fanny, 1811-1872.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
A novel norsesquiterpene glucoside ptesculentoside has been isolated from the Australian bracken Pteridium esculentum, together with the known bracken carcinogen ptaquiloside and lesser amounts of caudatoside. The structure of ptesculentoside is determined by analysis of 1D and 2D NMR spectra, and via its conversion into previously known pterosin G.
Resumo:
What is calf wastage. Breeding female cattle in north Australia contribute best to business success by producing a heavy weaner each year at the first weaning round. This maximises increase in value by the cow unit over the year, generally from mid-year to mid-year. The ability to cycle in both maiden heifers and lactating cows is the primary limitation to achieving this. Wastage of a calf at any stage between conception and weaning also substantially limits fertility and value increase at a herd level. Embryo loss may result in later calves as cows re-conceive; the calves produced are smaller at weaning and have to be weaned later into the dry season. Late calf wastage usually results in breeders missing a calf for the year. Late calving often also results in failure to cycle, thus cows rear a calf in the subsequent year.
Resumo:
A 2000-03 study to improve irrigation efficiency of grassed urban public areas in northern Australia found it would be difficult to grow most species in dry areas without supplementary watering. Sporoboulus virginicus and sand couch, Zoysia macrantha, were relatively drought-tolerant. Managers of sporting fields, parks and gardens could more than halve their current water use by irrigating over a long cycle, irrigating according to seasonal conditions and using grasses with low water use and sound soil management practices that encourage deep rooting. The use of effluent water provides irrigation and fertiliser cost savings and reduced nitrogen and phosphorus discharge to local waterways. Projected savings are $8000/ha/year in water costs for a typical sporting field.
Resumo:
Although only recently described, Colletotrichum boninense is well established in literature as an anthracnose pathogen or endophyte of a diverse range of host plants worldwide. It is especially prominent on members of Amaryllidaceae, Orchidaceae, Proteaceae and Solanaceae. Reports from literature and preliminary studies using ITS sequence data indicated that C. boninense represents a species complex. A multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3, CAL) of 86 strains previously identified as C. boninense and other related strains revealed 18 clades. These clades are recognised here as separate species, including C. boninense s. str., C. hippeastri, C. karstii and 12 previously undescribed species, C. annellatum, C. beeveri, C. brassicicola, C. brasiliense, C. colombiense, C. constrictum, C. cymbidiicola, C. dacrycarpi, C. novae-zelandiae, C. oncidii, C. parsonsiae and C. torulosum. Seven of the new species are only known from New Zealand, perhaps reflecting a sampling bias. The new combination C. phyllanthi was made, and C. dracaenae Petch was epitypified and the name replaced with C. petchii. Typical for species of the C. boninense species complex are the conidiogenous cells with rather prominent periclinal thickening that also sometimes extend to form a new conidiogenous locus or annellations as well as conidia that have a prominent basal scar. Many species in the C. boninense complex form teleomorphs in culture. TAXONOMIC NOVELTIES: New combination - Colletotrichum phyllanthi (H. Surendranath Pai) Damm, P.F. Cannon & Crous. Name replacement - C. petchii Damm, P.F. Cannon & Crous. New species - C. annellatum Damm, P.F. Cannon & Crous, C. beeveri Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. brassicicola Damm, P.F. Cannon & Crous, C. brasiliense Damm, P.F. Cannon, Crous & Massola, C. colombiense Damm, P.F. Cannon, Crous, C. constrictum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. cymbidiicola Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. dacrycarpi Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. novae-zelandiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. oncidii Damm, P.F. Cannon & Crous, C. parsonsiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. torulosum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir. Typifications: Epitypifications - C. dracaenae Petch.
Resumo:
This paper presents a maximum likelihood method for estimating growth parameters for an aquatic species that incorporates growth covariates, and takes into consideration multiple tag-recapture data. Individual variability in asymptotic length, age-at-tagging, and measurement error are also considered in the model structure. Using distribution theory, the log-likelihood function is derived under a generalised framework for the von Bertalanffy and Gompertz growth models. Due to the generality of the derivation, covariate effects can be included for both models with seasonality and tagging effects investigated. Method robustness is established via comparison with the Fabens, improved Fabens, James and a non-linear mixed-effects growth models, with the maximum likelihood method performing the best. The method is illustrated further with an application to blacklip abalone (Haliotis rubra) for which a strong growth-retarding tagging effect that persisted for several months was detected. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The following synonymies are proposed based on examination of primary types (lectotypes are designated for all taxa except those marked with a '*'): Lemidia spinnipennis Lea, 1907 syn. n. and Lemidia bicolor Schenkling, 1906 syn. n. = Lemidia biaculeata (Westwood); Lemidia mastersi Lea, 1907 syn. n. = Lemidia circumcincta Schenkling, 1906; Lemidia albonotata Pic, 1941 syn. n. = Lemidia laticeps Lea, 1907; Lemidia australiae Lea, 1907 syn. n. = Lemidia maculata Schenkling, 1902; Lemidia bilineatra Lea, 1907 syn. n. = Lemidia maculicollis Gorham, 1877; Lemidia decolor Pic, 1941 syn. n. = Lemidia munda Blackburn, 1892; *Phlogistus conspiciendus Elston, 1926 syn. n. = Mimolesterus ventralis (Westwood); Thanasimus cursorius Westwood, 1853 syn. n. and Stigmatium dispar Kuwert, 1894 syn. n. = Stigmatium acerbum (Newman); Stigmatium fasciatoventre Chevrolat, 1874 syn. n., Stigmatium flavescens Chevrolat, 1874 syn. n. and *Xestonotus eximius Kuwert, 1894 syn. n. = Stigmatium laevium Macleay, 1872; Stigmatium versipelle Gorham, 1876 syn. n. and Xestonotus (Cyclotomocerus) australicus Kuwert, 1894 syn. n. = Stigmatium varipes Chevrolat, 1876; Tarsostenus pulcher Macleay, 1872 syn. n. = *Tarsostenus carus (Newman, 1840). The available name Tarsosternus pulcher Macleay, 1872 is deemed a lapsus calami and emended to Tarsostenus pulcher Macleay, 1872.
Resumo:
Horse and Cattle Brands in Queensland since 1872 to current year 2015