8 resultados para Fencing
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Foraging by feral pigs can strongly affect wetland vegetation assemblages and so too wider ecological processes, although their effects on freshwater ecosystems have seldom been tudied. We assessed the ecological effects of pig foraging in replicate fenced and unfenced ephemeral floodplain lagoons in tropical north-eastern Australia. Pig foraging activities in unfenced lagoons caused major changes to aquatic macrophyte communities and as a consequence, to the proportional amounts of open water and bare ground. The destruction of macrophyte communities and upheaval of wetland sediments significantly affected wetland turbidity, and caused prolonged anoxia and pH imbalances in the unfenced treatments. Whilst fencing of floodplain lagoons will protect against feral pig foraging activities, our repeated measures of many biological, physical and chemical parameters inferred that natural seasonal (i.e. temporal) effects had a greater influence on these variables than did pigs. To validate this observation requires measuring how these effects are influenced by the seemingly greater annual disturbance regime of variable flooding and drying in this tropical climate.
Resumo:
Provision of artificial waterpoints in Australian rangelands has resulted in an increase in the range and density of kangaroos. At high densities, kangaroos can inhibit vegetation regeneration, particularly in some protected areas where harvesting is prohibited. Fencing off waterpoints has been proposed to limit these impacts. Our aim was to determine whether fencing off waterpoints during a drought (when kangaroos would be especially water-limited) would influence the density and distribution of red kangaroos (Macropus rufus). Two waterpoints were fenced within the first 6 months of the 27-month study and a further two waterpoints were kept unfenced as controls in Idalia National Park, western Queensland. We estimated kangaroo densities around waterpoints from walked line-transect counts, and their grazing distribution from dung-pellet counts. Fencing off waterpoints failed to influence either the density or distribution up to 4 km from the waterpoints. Our results indicate that food availability, rather than the location of waterpoints, determines kangaroo distribution. Few areas in the rangelands are beyond kangaroos' convenient reach from permanent waterpoints. Therefore, fencing off waterpoints without explicitly considering the spatial context in relation to other available water sources will fail to achieve vegetation regeneration.
Resumo:
This two-year study examined the impacts of feral pig diggings on five ecological indicators: seedling survival, surface litter, subsurface plant biomass, earthworm biomass and soil moisture content. Twelve recovery exclosures were established in two habitats (characterised by wet and dry soil moisture) by fencing off areas of previous pig diggings. A total of 0.59 ha was excluded from further pig diggings and compared with 1.18 ha of unfenced control areas. Overall, seedling numbers increased 7% within the protected exclosures and decreased 37% within the unprotected controls over the two-year study period. A significant temporal interaction was found in the dry habitat, with seedling survival increasing with increasing time of protection from diggings. Feral pig diggings had no significant effect on surface litter biomass, subsurface plant biomass, earthworm biomass or soil moisture content.
Resumo:
Wild canids (wild dogs and European red foxes) cause substantial losses to Australian livestock industries and environmental values. Both species are actively managed as pests to livestock production. Contemporaneously, the dingo proportion of the wild dog population, being considered native, is protected in areas designated for wildlife conservation. Wild dogs particularly affect sheep and goat production because of the behavioural responses of domestic sheep and goats to attack, and the flexible hunting tactics of wild dogs. Predation of calves, although less common, is now more economically important because of recent changes in commodity prices. Although sometimes affecting lambing and kidding rates, foxes cause fewer problems to livestock producers but have substantial impacts on environmental values, affecting the survival of small to medium-sized native fauna and affecting plant biodiversity by spreading weeds. Canid management in Australia relies heavily on the use of compound 1080-poisoned baits that can be applied aerially or by ground. Exclusion fencing, trapping, shooting, livestock-guarding animals and predator calling with shooting are also used. The new Invasive Animals Cooperative Research Centre has 40 partners representing private and public land managers, universities, and training, research and development organisations. One of the major objectives of the new IACRC is to apply a strategic approach in order to reduce the impacts of wild canids on agricultural and environmental values in Australia by 10%. In this paper, the impacts, ecology and management of wild canids in Australia are briefly reviewed and the first cooperative projects that will address IACRC objectives for improving wild dog management are outlined.
Resumo:
In Australia, the development of rangelands has led to steady gains in pastoral productivity through more intensive and widespread land use (Stokes et al., 2006). Opportunities to benefit from intensification exist on large properties with relatively poor water and fencing infrastructure development, resulting in uneven utilisation of available forage (Ash et al.,2006). The objective of this study is to value expected economic gains from carrying out property improvements on a beef property located in Northern Australia.
Resumo:
1. The successful introduction of the red fox Vulpes vulpes into Australia in the 1870s has had dramatic and deleterious impacts on both native fauna and agricultural production. Historical accounts detail how the arrival of foxes in many areas coincided with the local demise of native fauna. Recent analyses suggest that native fauna can be successfully reintroduced to their former ranges only if foxes have been controlled, and several replicated removal experiments have confirmed that foxes are the major agents of extirpation of native fauna. Predation is the primary cause of losses, but competition and transmission of disease may be important for some species. 2. In agricultural landscapes, fox predation on lambs can cause losses of 1–30%; variation is due to flock size, health and management, as well as differences in the timing and duration of lambing and the density of foxes. 3. Fox control measures include trapping, shooting, den fumigation and exclusion fencing; baiting using the toxin 1080 is the most commonly employed method. Depending on the baiting strategy, habitat and area covered, baiting can reduce fox activity by 50–97%. We review patterns of baiting in a large sheep-grazing region in central New South Wales, and propose guidelines to increase landholder awareness of baiting strategies, to concentrate and coordinate bait use, and to maximize the cost-effectiveness of baiting programs. 4. The variable reduction in fox density within the baited area, together with the ability of the fox to recolonize rapidly, suggest that current baiting practices in eastern Australia are often ineffective, and that reforms are required. These might include increasing landholder awareness and involvement in group control programs, and the use of more efficient broadscale techniques, such as aerial baiting.
Resumo:
Beef cattle grazing is the dominant land use in the extensive tropical and sub-tropical rangelands of northern Australia. Despite the considerable knowledge on land and herd management gained from both research and practical experience, the adoption of improved management is limited by an inability to predict how changes in practices and combinations of practices will affect cattle production, economic returns and resource condition. To address these issues, past Australian and international research relating to four management factors that affect productivity and resource condition was reviewed in order to identify key management principles. The four management factors considered were stocking rates, pasture resting, prescribed fire, and fencing and water point development for managing grazing distribution. Four management principles for sound grazing management in northern Australia were formulated as follows: (1) manage stocking rates to meet goals for livestock production and land condition; (2) rest pastures to maintain them in good condition or to restore them from poor condition to increase pasture productivity; (3) devise and apply fire regimes that enhance the condition of grazing land and livestock productivity while minimising undesirable impacts; and (4) use fencing and water points to manipulate grazing distribution. Each principle is supported by several more specific guidelines. These principles and guidelines, and the supporting research on which they are based, are presented.
Resumo:
Rainfall variability is a major challenge to sustainable grazing management in northern Australia, with management often complicated further by large, spatially-heterogeneous paddocks. This paper presents the latest grazing research and associated bio-economic modelling from northern Australia and assesses the extent to which current recommendations to manage for these issues are supported. Overall, stocking around the safe long-term carrying capacity will maintain land condition and maximise long-term profitability. However, stocking rates should be varied in a risk-averse manner as pasture availability varies between years. Periodic wet-season spelling is also essential to maintain pasture condition and allow recovery of overgrazed areas. Uneven grazing distributions can be partially managed through fencing, providing additional water-points and in some cases patch-burning, although the economics of infrastructure development are extremely context-dependent. Overall, complex multi-paddock grazing systems do not appear justified in northern Australia. Provided the key management principles outlined above are applied in an active, adaptive manner, acceptable economic and environmental outcomes will be achieved irrespective of the grazing system applied.