13 resultados para Family Values
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Aims: The aim of this work was to develop a rapid molecular test for the detection of the Chlamydiaceae family, irrespective of the species or animal host. Methods and Results: The method described herein is a polymerase chain reaction targeting the 16S rRNA gene of the Chlamydiaceae family, and the results demonstrate that the test reacts with five reference Chlamydiaceae but none of the 19 other bacterial species or five uninfected animal tissues tested. The results also indicate the enhanced sensitivity of this test when compared with conventional culture or serology techniques. This is demonstrated through parallel testing of six real clinical veterinary cases and confirmatory DNA sequence analysis. Conclusions, Significance and Impact of the Study: This test can be used by veterinary diagnostic laboratories for rapid detection of Chlamydiaceae in veterinary specimens, with no restriction of chlamydial species or animal host. The test does not differentiate chlamydial species, and if required, speciation must be carried out retrospectively using alternate methods. However, for the purpose of prescribing therapy for chlamydiosis, this test would be an invaluable laboratory tool.
Resumo:
Two isolates of a novel babuvirus causing "bunchy top" symptoms were characterised, one from abaca (Musa textilis) from the Philippines and one from banana (Musa sp.) from Sarawak (Malaysia). The name abacá bunchy top virus (ABTV) is proposed. Both isolates have a genome of six circular DNA components, each ca. 1.0-1.1 kb, analogous to those of isolates of Banana bunchy top virus (BBTV). However, unlike BBTV, both ABTV isolates lack an internal ORF in DNA-R, and the ORF in DNA-U3 found in some BBTV isolates is also absent. In all phylogenetic analyses of nanovirid isolates, ABTV and BBTV fall in the same clade, but on separate branches. However, ABTV and BBTV isolates shared only 79-81% amino acid sequence identity for the putative coat protein and 54-76% overall nucleotide sequence identity across all components. Stem-loop and major common regions were present in ABTV, but there was less than 60% identity with the major common region of BBTV. ABTV and BBTV were also shown to be serologically distinct, with only two out of ten BBTV-specific monoclonal antibodies reacting with ABTV. The two ABTV isolates may represent distinct strains of the species as they are less closely related to each other than are isolates of the two geographic subgroups (Asian and South Pacific) of BBTV.
Resumo:
Genetic control of vegetative propagation traits was described for a second-generation, outbred, intersectional hybrid family (N = 208) derived from two species, Corymbia torelliana (F. Muell.) K.D. Hill & L.A.S. Johnson and Corymbia variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, which contrast for propagation characteristics and in their capacity to develop lignotubers. Large phenotypic variances were evident for rooting and most other propagation traits, with significant proportions attributable to differences between clones (broad-sense heritabilities 0.2-0.5). Bare root assessment of rooting rate and root quality parameters tended to have the highest heritabilities, whereas rooting percentage based on root emergence from pots and shoot production were intermediate. Root biomass and root initiation had the lowest heritabilities. Strong favourable genetic correlations were found between rooting percentage and root quality traits such as root biomass, volume, and length. Lignotuber development on a seedling was associated with low rooting and a tendency to poor root quality in cuttings and was in accord with the persistence of species parent types due to gametic phase disequilibrium. On average, nodal cuttings rooted more frequently and with higher quality root systems, but significant cutting type x genotype interaction indicated that for some clones, higher rooting rates were obtained from tips. Low germination, survival of seedlings, and rooting rates suggested strong hybrid breakdown in this family.
Resumo:
Although bats of the genus Pteropus are important ecologically as pollinators and natural hosts for zoonotic pathogens, little is known about their basic physiology. Hematology and plasma biochemistries were determined from wild-caught flying foxes (Pteropus giganteus) in northern India (n = 41). Mean lymphocyte differential count was higher for juveniles than adults. Mean platelet count was lower than previously reported. No hemoparasites were observed. No differences were observed between plasma biochemistry values of male and female bats, juveniles and adults, or lactating and nonlactating females. Variation in aspartate aminotransferase (AST) was seen based on body condition score. Blood urea nitrogen and cholesterol concentrations were lower in P. giganteus than other mammalian groups, but were consistent with those reported from other Pteropus species. Alanine aminotransferase and AST concentrations were higher than those reported for Pteropus vampyrus, a closely related species. This study provides basic physiologic information that can be used in future health and disease studies of Indian flying foxes.
Resumo:
Polioencephalomalacia was diagnosed histologically in cattle from two herds on the Darling Downs, Queensland, during July-August 2007. In the first incident, 8 of 20 18-month-old Aberdeen Angus steers died while grazing pastures comprising 60% Sisymbrium irio (London rocket) and 40% Capsella bursapastoris (shepherd's purse). In the second incident, 2 of 150 mixed-breed adult cattle died, and another was successfully treated with thiamine, while grazing a pasture comprising almost 100% Raphanus raphanistrum (wild radish). Affected cattle were either found dead or comatose or were seen apparently blind and head-pressing in some cases. For both incidents, plant and water assays were used to calculate the total dietary sulfur content in dry matter as 0.62% and 1.01% respectively, both exceeding the recommended 0.5% for cattle eating more than 40% forage. Blood and tissue assays for lead were negative in both cases. No access to thiaminase, concentrated sodium ion or extrinsic hydrogen sulfide sources were identified in either incident. Below-median late summer and autumn rainfall followed by above-median unseasonal winter rainfall promoted weed growth at the expense of wholesome pasture species before these incidents.
Resumo:
Manual grading of prawns restricts the number that can be harvested. A restricted harvest size places a limit on the opposing within family and between family sources of selection pressure. A simulation study with inbreeding constrained at 0.5% per generation, a harvest size of 2000, heritability of 0.3, common family environmental effect of 0.1, indicates that maximum response to selection could be achieved with as few as 40 families. Increasing the number of families above 80 may reduce total selection response. It is important to be aware that increasing the number of families may not always yield a greater genetic response.
Resumo:
Mastreviruses (family Geminiviridae) that infect monocotyledonous plants occur throughout the temperate and tropical regions of Asia, Africa, Europe and Australia. Despite the identification of a very diverse array of mastrevirus species whose members infect African monocots, few such species have been discovered in other parts of the world. For example, the sequence of only a single monocot-infecting mastrevirus, Chloris striate mosaic virus (CSMV), has been reported so far from Australia, even though earlier biological and serological studies suggested that other distinct mastreviruses were present. Here, we have obtained the complete nucleotide sequence of a virus from the grass Digitaria didactyla originating from Australia. Analysis of the sequence shows the virus to be a typical mastrevirus, with four open reading frames, two in each orientation, separated by two non-coding intergenic regions. Although it showed the highest levels of sequence identity to CSMV (68.7%), their sequences are sufficiently diverse for the virus to be considered a member of a new species in the genus Mastrevirus, based on the present species demarcation criteria. We propose that the name first used during the 1980s be used for this species, Digitaria didactyla striate mosaic virus (DDSMV).
Resumo:
Cotton bunchy top (CBT) disease has caused significant yield losses in Australia and is now managed by control of its vector, the cotton aphid (Aphis gossypii). Its mode of transmission and similarities in symptoms to cotton Blue Disease suggested it may also be caused by a luteovirus or related virus. Degenerate primers to conserved regions of the genomes of the family Luteoviridae were used to amplify viral cDNAs from CBT-affected cotton leaf tissue that were not present in healthy plants. Partial genome sequence of a new virus (Cotton bunchy top virus, CBTV) was obtained spanning part of the RNA-dependent-RNA-polymerase (RdRP), all of the coat protein and part of the aphid-transmission protein. CBTV sequences could be detected in viruliferous aphids able to transmit CBT, but not aphids from non-symptomatic plants, indicating that it is associated with the disease and may be the causal agent. All CBTV open-reading frames had their closest similarity to viruses of the genus Polerovirus. The partial RdRP had 90 % amino acid identity to the RdRP of Cotton leafroll dwarf virus (CLRDV) that causes cotton blue disease, while other parts of the genome were more similar to other poleroviruses. The sequence similarity and genome organization of CBTV suggest that it should be considered a new member of the genus Polerovirus. This partial genome sequence of CBTV opens up the possibility for developing diagnostic tests for detection of the virus in cotton plants, aphids and weeds as well as alternative strategies for engineering CBT resistance in cotton plants through biotechnology. © 2012 Australasian Plant Pathology Society Inc.
The use of genetic correlations to evaluate associations between SNP markers and quantitative traits
Resumo:
Open-pollinated progeny of Corymbia citriodora established in replicated field trials were assessed for stem diameter, wood density, and pulp yield prior to genotyping single nucleotide polymorphisms (SNP) and testing the significance of associations between markers and assessment traits. Multiple individuals within each family were genotyped and phenotyped, which facilitated a comparison of standard association testing methods and an alternative method developed to relate markers to additive genetic effects. Narrow-sense heritability estimates indicated there was significant additive genetic variance within this population for assessment traits ( h ˆ 2 =0.28to0.44 ) and genetic correlations between the three traits were negligible to moderate (r G = 0.08 to 0.50). The significance of association tests (p values) were compared for four different analyses based on two different approaches: (1) two software packages were used to fit standard univariate mixed models that include SNP-fixed effects, (2) bivariate and multivariate mixed models including each SNP as an additional selection trait were used. Within either the univariate or multivariate approach, correlations between the tests of significance approached +1; however, correspondence between the two approaches was less strong, although between-approach correlations remained significantly positive. Similar SNP markers would be selected using multivariate analyses and standard marker-trait association methods, where the former facilitates integration into the existing genetic analysis systems of applied breeding programs and may be used with either single markers or indices of markers created with genomic selection processes.
Resumo:
Mango is an important horticultural fruit crop and breeding is a key strategy to improve ongoing sustainability. Knowledge of breeding values of potential parents is important for maximising progress from breeding. This study successfully employed a mixed linear model methods incorporating a pedigree to predict breeding values for average fruit weight from highly unbalanced data for genotypes planted over three field trials and assessed over several harvest seasons. Average fruit weight was found to be under strong additive genetic control. There was high correlation between hybrids propagated as seedlings and hybrids propagated as scions grafted onto rootstocks. Estimates of additive genetic correlation among trials ranged from 0.69 to 0.88 with correlations among harvest seasons within trials greater than 0.96. These results suggest that progress from selection for broad adaptation can be achieved, particularly as no repeatable environmental factor that could be used to predict G x E could be identified. Predicted breeding values for 35 known cultivars are presented for use in ongoing breeding programs.
Resumo:
Fusarium wilt of strawberry, incited by Fusarium oxysporum f. sp. fragariae (Fof), is a major disease of the cultivated strawberry (Fragaria xananassa) worldwide. An increase in disease outbreaks of the pathogen in Western Australia and Queensland plus the search for alternative disease management strategies place emphasis on the development of resistant cultivars. In response, a partial incomplete diallel cross involving four parents was performed for use in glasshouse resistance screenings. The resulting progeny were evaluated for their susceptibility to Fof. Best-performing progeny and suitability of progenies as parents were determined using data from disease severity ratings and analyzed using a linear mixed model incorporating a pedigree to produce best linear unbiased predictions of breeding values. Variation in disease response, ranging from highly susceptible to resistant, indicates a quantitative effect. The estimate of the narrow-sense heritability was 0.49 +/- 0.04 (SE), suggesting the population should be responsive to phenotypic recurrent selection. Several progeny genotypes have predicted breeding values higher than any of the parents. Knowledge of Fof resistance derived from this study can help select best parents for future crosses for the development of new strawberry cultivars with Fof resistance.
Resumo:
Commercial environments may receive only a fraction of expected genetic gains for growth rate as predicted from the selection environment. This fraction is result of undesirable genotype-by-environment interactions (GxE) and measured by the genetic correlation (rg) of growth between environments. Rapid estimates of genetic correlation achieved in one generation are notoriously difficult to estimate with precision. A new design is proposed where genetic correlations can be estimated by utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a single female. We compare a traditional phenotype analysis of growth to a threshold model where only the largest fish are genotyped for sire identification. The threshold model was robust to differences in family mortality differing up to 30%. The design is unique as it negates potential re-ranking of families caused by an interaction between common maternal environmental effects and growing environment. The design is suitable for rapid assessment of GxE over one generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. Different design scenarios were tested for bias and accuracy with a range of heritability values, number of half-sib families created, number of progeny within each full-sib family, number of fish genotyped, number of fish stocked, differing family survival rates and at various simulated genetic correlation levels.
Resumo:
Background: Rhipicephalus (Boophilus) microplus evades the host's haemostatic system through a complex protein array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors modulate diverse and essential proteases involved in different physiological processes. Methods: The identification of R. microplus serpin sequences was performed through a web-based bioinformatics environment called Yabi. The database search was conducted on BmiGi V1, BmiGi V2.1, five SSH libraries, Australian tick transcriptome libraries and RmiTR V1 using bioinformatics methods. Semi quantitative PCR was carried out using different adult tissues and tick development stages. The cDNA of four identified R. microplus serpins were cloned and expressed in Pichia pastoris in order to determine biological targets of these serpins utilising protease inhibition assays. Results: A total of four out of twenty-two serpins identified in our analysis are new R. microplus serpins which were named as RmS-19 to RmS-22. The analyses of DNA and predicted amino acid sequences showed high conservation of the R. microplus serpin sequences. The expression data suggested ubiquitous expression of RmS except for RmS-6 and RmS-14 that were expressed only in nymphs and adult female ovaries, respectively. RmS-19, and -20 were expressed in all tissues samples analysed showing their important role in both parasitic and non-parasitic stages of R. microplus development. RmS-21 was not detected in ovaries and RmS-22 was not identified in ovary and nymph samples but were expressed in the rest of the samples analysed. A total of four expressed recombinant serpins showed protease specific inhibition for Chymotrypsin (RmS-1 and RmS-6), Chymotrypsin / Elastase (RmS-3) and Thrombin (RmS-15). Conclusion: This study constitutes an important contribution and improvement to the knowledge about the physiologic role of R. microplus serpins during the host-tick interaction.