66 resultados para Exotic plants
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed in coastal Queensland, Australia. There is a lack of quantitative data on its leaf chemistry and its impact on soil properties. Soils from infested vs uninfested areas, and leaves of M. unguis-cati and three co-occurring vine species (one exotic, two native) were collected at six sites (riparian and non-riparian) in south-eastern Queensland. Effects of invasion status, species, site and habitat type were examined using univariate and multivariate analyses. Habitat type had a greater effect on soil nutrients than on leaf chemistry. Invasion effect of M. unguis-cati on soil chemistry was more pronounced in non-riparian than in riparian habitat. Significantly higher values were obtained in M. unguis-cati infested (vs. uninfested) soils for ~50% of traits. Leaf ion concentrations differed significantly between exotic and native vines. Observed higher leaf-nutrient load (especially nitrogen, phosphorus and potassium) in exotic plants aligns with the preference of invasive plant species for disturbed habitats with higher nutrient input. Higher load of trace elements (aluminium, boron, cadmium and iron) in its leaves suggests that cycling of heavy-metal ions, many of which are potentially toxic at excess level, could be accelerated in soils of M. unguis-cati-invaded landscape. Although inferences from the present study are based on correlative data, the consistency of the patterns across many sites suggests that M. unguis-cati may improve soil fertility and influence nutrient cycling, perhaps through legacy effects of its own litter input.
Resumo:
We investigated whether plasticity in growth responses to nutrients could predict invasive potential in aquatic plants by measuring the effects of nutrients on growth of eight non-invasive native and six invasive exotic aquatic plant species. Nutrients were applied at two levels, approximating those found in urbanized and relatively undisturbed catchments, respectively. To identify systematic differences between invasive and non-invasive species, we compared the growth responses (total biomass, root:shoot allocation, and photosynthetic surface area) of native species with those of related invasive species after 13 weeks growth. The results were used to seek evidence of invasive potential among four recently naturalized species. There was evidence that invasive species tend to accumulate more biomass than native species (P = 0.0788). Root:shoot allocation did not differ between native and invasive plant species, nor was allocation affected by nutrient addition. However, the photosynthetic surface area of invasive species tended to increase with nutrients, whereas it did not among native species (P = 0.0658). Of the four recently naturalized species, Hydrocleys nymphoides showed the same nutrient-related plasticity in photosynthetic area displayed by known invasive species. Cyperus papyrus showed a strong reduction in photosynthetic area with increased nutrients. H. nymphoides and C. papyrus also accumulated more biomass than their native relatives. H. nymphoides possesses both of the traits we found to be associated with invasiveness, and should thus be regarded as likely to be invasive.
Resumo:
The Mt Garnet Landcare Group commissioned a survey of landholders within the Upper Herbert and Upper Burdekin River Catchments to assess the density of native woodlands and to gauge the extent of exotic weed infestation. Twenty-four of 49 landholders responded, representing an area of nearly 500 000 ha or 47% of the total area. Dense native woodland covers 24% (>117 000 ha) of the area surveyed, while a further 30% (140 000 ha) supports moderately dense stands. The dense stands are largely confined to the highly fertile alluvial soils (26% dense woodland) and the lower fertility sandy-surfaced soils (33% or >96 000 ha). Moderate and dense infestations of exotic weeds, principally Lantana camara, occur on 54% (20 000 ha) of alluvial soils and on 13% of sandy-surfaced soils (39 000 ha), where praxelis (Praxelis clematidia) is the major weed. Basaltic soils have low levels of both dense woodland and exotic weed infestation. Some implications of the results are discussed.
Resumo:
Invasive bird-dispersed plants often share the same suite of dispersers as co-occurring native species, resulting in a complex management issue. Integrated management strategies could incorporate manipulation of dispersal or establishment processes. To improve our understanding of these processes, we quantified seed rain, recruit and seed bank density, and species richness for bird-dispersed invasive and native species in three early successional subtropical habitats in eastern Australia: tree regrowth, shrub regrowth and native restoration plantings. We investigated the effects of environmental factors (leaf area index (LAI), distance to edge, herbaceous ground cover and distance to nearest neighbour) on seed rain, seed bank and recruit abundance. Propagule availability was not always a good predictor of recruitment. For instance, although native tree seed rain density was similar, and species richness was higher, in native plantings, compared with tree regrowth, recruit density and species richness were lower. Native plantings also received lower densities of invasive tree seed rain than did tree regrowth habitats, but supported a similar density of invasive tree recruits. Invasive shrub seed rain was recorded in highest densities in shrub regrowth sites, but recruit density was similar between habitats. We discuss the role of microsite characteristics in influencing post-dispersal processes and recruit composition, and suggest ways of manipulating these processes as part of an integrated management strategy for bird-dispersed weeds in natural areas.
Resumo:
Eucalyptus species, native to Australia, Indonesia, the Philippines, and New Guinea, are the most widely planted hardwood timber species in the world. The trees, moved around the globe as seeds, escaped the diverse community of herbivores found in their native range. However, a number of herbivore species from the native range of eucalypts have invaded many Eucalyptus-growing regions in North America, Europe, Africa, Asia, and South America in the last 30 years. In addition, there have been shifts of native species, particularly in Africa, Asia, and South America, onto Eucalyptus. There are risks that these species as well as generalist herbivores from other parts of the world will invade Australia and threaten the trees in their native range. The risk to Eucalyptus plantations in Australia is further compounded by planting commercially important species outside their endemic range and shifting of local herbivore populations onto new host trees. Understanding the mechanisms underlying host specificity of Australian insects can provide insight into patterns of host range expansion of both native and exotic insects.
Resumo:
This report collates data on the nutrient and phytochemical content of tropical exotic fruits, the evidence for health effects from consumption of these fruit and the use of extracts from edible and non-edible parts of these plants. The knowledge of Australian fruit compared with that grown overseas is presented together with opportunities for future work by Australian researchers. Opportunities for developing commercial extracts for use as food or nutraceutical uses are also presented.
Resumo:
The aims of this project will provide capacity in virology expertise to help protect Australian cotton from virus diseases including both existing and those that pose significant biosecurity threats. This project will also provide continued capacity in virology to support the cotton industry.
Resumo:
In the rangelands of northern Australia, basal bark, cut stump, hand applied residual herbicides and foliar spraying have traditionally been the main herbicide techniques for control of individual exotic woody weeds growing within scattered to medium density infestations. In this paper we report on the preliminary results of stem injection as an alternate technique for the control of yellow oleander ( Cascabela thevetia (L.) Lippold), a woody weed that is difficult to kill. A randomised complete block experiment comprising 12 herbicide treatments (including a control) and three replicates was undertaken. Two rates of triclopyr + picloram, hexazinone, glyphosate, 2,4- D + picloram and metsufuron methyl and one rate of imazapyr were tested. At 15 months after application, triclopyr + picloram, glyphosate, 2,4-D + picloram and imazapyr all recorded high mortality (>90%) for at least one application rate. These results suggest that stem injection warrants further investigation as a control technique for other exotic woody weeds growing in rangelands.
Resumo:
Purpose This study investigated how nitrogen (N) nutrition and key physiological processes varied under changed water and nitrogen competition resulting from different weed control and fertilisation treatments in a 2-year-old F1 hybrid (Pinus elliottii Engelm var. elliottii × P. caribaea var. hondurensis Barr. ex Golf.) plantation on a grey podzolic soil type, in Southeast Queensland. Materials and methods The study integrated a range of measures including growth variables (diameter at ground level (DGL), diameter at breast height (DBH) and height (H)), foliar variables (including foliar N concentration, foliar δ13C and δ15N) and physiological variables (including photosynthesis (An), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (WUEi) (A/gs) and xylem pressure potential (ΨXPP)) to better understand the mechanisms influencing growth under different weed control and fertilisation treatments. Five levels of weed control were applied: standard (routine), luxury, intermediate, mechanical and nil weed control, all with routine fertilisation plus an additional treatment, routine weed control and luxury fertilisation. Relative weed cover was assessed at 0.8, 1.1 and 1.6 years after plantation establishment to monitor the effectiveness of weed control treatments. Soil investigation included soil ammonium (NH4 +-N), nitrate (NO3 −-N), potentially mineralizable N (PMN), gravimetric soil moisture content (MC), hot water extractable organic carbon (HWETC), hot water extractable total N (HWETN), total C, total N, stable C isotope composition (δ13C), stable N isotope composition (δ15N), total P and extractable K. Results and discussion There were significant relationships between foliar N concentrations and relative weed cover and between tree growth and foliar N concentration or foliar δ15N, but initial site preparation practices also increased soil N transformations in the planting rows reducing the observable effects of weed control on foliar δ15N. A positive relationship between foliar N concentration and foliar δ13C or photosynthesis indicated that increased N availability to trees positively influenced non-stomatal limitations to photosynthesis. However, trees with increased foliar N concentrations and photosynthesis were negatively related to xylem pressure potential in the afternoons which enhanced stomatal limitations to photosynthesis and WUEi. Conclusions Luxury and intermediate weed control and luxury fertilisation positively influenced growth at early establishment by reducing the competition for water and N resources. This influenced fundamental key physiological processes such as the relationships between foliar N concentration, A n, E, gs and ΨXPP. Results also confirmed that time from cultivation is an important factor influencing the effectiveness of using foliar δ15N as an indicator of soil N transformations.
Resumo:
Purpose We investigated the effects of weed control and fertilization at early establishment on foliar stable carbon (δ13C) and nitrogen (N) isotope (δ15N) compositions, foliar N concentration, tree growth and biomass, relative weed cover and other physiological traits in a 2-year old F1 hybrid (Pinus elliottii var. elliottii (Engelm) × Pinus caribaea var. hondurensis (Barr. ex Golf.)) plantation grown on a yellow earth in southeast Queensland of subtropical Australia. Materials and methods Treatments included routine weed control, luxury weed control, intermediate weed control, mechanical weed control, nil weed control, and routine and luxury fertilization in a randomised complete block design. Initial soil nutrition and soil fertility parameters included (hot water extractable organic carbon (C) and total nitrogen (N), total C and N, C/N ratio, labile N pools (nitrate (NO3 −) and ammonium (NH4 +)), extractable potassium (K+)), soil δ15N and δ13C. Relative weed cover, foliar N concentrations, tree growth rate and physiological parameters including photosynthesis, stomatal conductance, photosynthetic nitrogen use efficiency, foliar δ15N and foliar δ13C were also measured at early establishment. Results and discussion Foliar N concentration at 1.25 years was significantly different amongst the weed control treatments and was negatively correlated to the relative weed cover at 1.1 years. Foliar N concentration was also positively correlated to foliar δ15N and foliar δ13C, tree height, height growth rates and tree biomass. Foliar δ15N was negatively correlated to the relative weed cover at 0.8 and 1.1 years. The physiological measurements indicated that luxury fertilization and increasing weed competition on these soils decreased leaf xylem pressure potential (Ψxpp) when compared to the other treatments. Conclusions These results indicate how increasing N resources and weed competition have implications for tree N and water use at establishment in F1 hybrid plantations of southeast Queensland, Australia. These results suggest the desirability of weed control, in the inter-planting row, in the first year to maximise site N and water resources available for seedling growth. It also showed the need to avoid over-fertilisation, which interfered with the balance between available N and water on these soils.
Resumo:
Mikania micrantha (Asteraceae) commonly known as mikania, is a major invasive alien plant (IAP) in the tropical humid agricultural and forest zones of the Asia-Pacific region. This fast-growing Neotropical vine is able to smother plants in agricultural ecosystems, agroforestry and natural habitats, reducing productivity and biodiversity. Fungal pathogens were first investigated for the classical biological control of this weed in 1996. This resulted in the selection and screening of the highly host-specific and damaging rust pathogen, Puccinia spegazzinii (Pucciniales). It was first released in India and China in 2005/6, although it is not believed to have established. Since then, it has been released successfully in Taiwan, Papua New Guinea (PNG), Fiji and most recently Vanuatu. The rust has established and is spreading rapidly after applying lessons learned from the first releases on the best rust pathotype and release strategy. In PNG, direct monitoring of vegetation change has demonstrated that the rust is having a significant impact on M. micrantha, with no unpredicted non-target impacts. Despite this, the authorities in many countries where mikania is a problem remain cautious about releasing the rust. In Western Samoa, introduction of the rust was not pursued because of a conflict of interest, and the perception that mikania suppresses even worse weeds. For some, ‘pathophobia’ is still a major obstacle. In Indonesia, where insects for weed CBC have been introduced, pathogens will currently not be considered. In other countries such as Bhutan and Myanmar, there are no baseline data on the presence and impact of IAPs and, with no history of CBC, no institutional framework for implementing this approach. Malaysia has a well-developed framework, but capacity needs to be built in the country. Overall, it remains critical to have champions at decision making levels. Hence, even with an effective ‘off-the-shelf’ agent available, implementation of mikania CBC still requires significant inputs tailored to the countries’ specific needs.
Resumo:
The hypothesis that contaminant plants growing amongst chickpea serve as Helicoverpa sinks by diverting oviposition pressure away from the main crop was tested under field conditions. Gain (recruitment) and loss (presumed mortality) of juvenile stages of Helicoverpa spp. on contaminant faba bean and wheat plants growing in chickpea plots were quantified on a daily basis over a 12-d period. The possibility of posteclosion movement of larvae from the contaminants to the surrounding chickpea crop was examined. Estimated total loss of the census population varied from 80 to 84% across plots and rows. The loss of brown eggs (40–47%) contributed most to the overall loss estimate, followed by loss of white eggs (27–35%) and larvae (6–9%). The cumulative number of individuals entering the white and brown egg and larval stages over the census period ranged from 15 to 58, 10–48 and 1–6 per m row, respectively. The corresponding estimates of mean stage-specific loss, expressed as a percentage of individuals entering the stage, ranged from 52 to 57% for white eggs, 87–108% for brown eggs and 71–87% for first-instar larvae. Mean larval density on chickpea plants in close proximity to the contaminant plants did not exceed the baseline larval density on chickpea further away from the contaminants across rows and plots. The results support the hypothesis that contaminant plants in chickpea plots serve as Helicoverpa sinks by diverting egg pressure from the main crop and elevating mortality of juvenile stages. Deliberate contamination of chickpea crops with other plant species merits further investigation as a cultural pest management strategy for Helicoverpa spp.
Resumo:
Peanut (Arachis hypogaea L.) lines exhibiting high levels of resistance to peanut stripe virus (PStV) were obtained following microprojectile bombardment of embryogenic callus derived from mature seeds. Fertile plants of the commercial cultivars Gajah and NC7 were regenerated following co-bombardmentwith the hygromycin resistance gene and one of two forms of the PStV coat protein (CP) gene, an untranslatable, full length sequence (CP2) or a translatable gene encoding a CP with an N-terminal truncation (CP4). High level resistance to PStV was observed for both transgenes when plants were challenged with the homologous virus isolate. The mechanism of resistance appears to be RNA-mediated, since plants carrying either the untranslatable CP2 or CP4 had no detectable protein expression, but were resistant or immune (no virus replication). Furthermore, highly resistant, but not susceptible CP2 T0 plants contained transgene-specific small RNAs. These plants now provide important germplasm for peanut breeding, particularly in countries where PStV is endemic and poses a major constraint to peanut production.
Resumo:
Sectors of the forest plantation industry in Australia are set to expand in the near future using species or hybrids of the spotted gums (Corymbia, Section Politaria). Plantations of these taxa have already been introduced across temperate and subtropical Australia, representing locally exotic introductions from native stands in Queensland and New South Wales. A literature review was undertaken to provide insights into the potential for pollen-mediated gene flow from these plantations into native populations. Three factors suggest that such gene flow is likely; (1) interspecific hybridisation within the genus has frequently been recorded, including between distantly related species from different sections, (2) apparent high levels of vertebrate pollinator activity may result in plantation pollen being moved over hundreds of kilometres, (3) much of the plantation estate is being established among closely related taxa and therefore few barriers to gene flow are expected. Across Australia, 20 of the 100 native Corymbia taxa were found to have regional level co-occurrence with plantations. These were located most notably within regions of north-east New South Wales and south-east Queensland, however, co-occurrence was also found in south-west Western Australia and eastern Victoria. The native species found to have co-occurrence were then assessed for the presence of reproductive barriers at each step in the process of gene flow that may reduce the number of species at risk even further. The available data suggest three risk categories exist for Corymbia. The highest risk was for gene flow from plantations of spotted gums to native populations of spotted gums. This was based on the expected limited existence of pre- and post-zygotic barriers, substantial long-distance pollen dispersal and an apparent broad period of flowering in Corymbia citriodora subsp. variegata plantations. The following risk category focussed on gene flow from Corymbia torelliana × C. c. variegata hybrid plantations into native C. c. variegata, as the barriers associated with the production and establishment of F1 hybrids have been circumvented. For the lowest risk category, Corymbia plantations may present a risk to other non-spotted gum species, however, further investigation of the particular cross-combinations is required. A list of research directions is provided to better quantify these risks. Empirical data will need to be combined within a risk assessment framework that will not only estimate the likelihood of exotic gene flow, but also consider the conservation status/value of the native populations. In addition, the potential impacts of pollen flow from plantations will need to be weighed up against their various economic and environmental benefits.
Resumo:
Rainfall simulation experiments were carried out to measure runoff and soil water fluxes of suspended solids, total nitrogen, total phosphorus, dissolved organic carbon and total iron from sites in Pinus plantations on the coastal lowlands of south-eastern Queensland subjected to various operations (treatments). The operations investigated were cultivated and nil-cultivated site preparation, fertilised site preparation, clearfall harvesting and prescribed burning; these treatments were compared with an 8-y-old established plantation. Flow-weighted mean concentrations of total nitrogen and total phosphorus in surface runoff from the cultivated and nil-cultivated site-preparation, clearfall harvest, prescribed burning and 8-y-old established plantation treatments were very similar. However, both the soil water and the runoff from the fertilised site preparation treatment contained more nitrogen (N) and phosphorus (P) than the other treatments - with 3.10 mg N L-1 and 4.32 mg P L-1 (4 and 20 times more) in the runoff. Dissolved organic carbon concentrations in runoff from the nil-cultivated site-preparation and prescribed burn treatments were elevated. Iron concentrations were highest in runoff from the nil-cultivated site-preparation and 8-y-old established plantation treatments. Concentrations of suspended solids in runoff were higher from cultivated site preparation and prescribed burn treatments, and reflect the great disturbance of surface soil at these sites. The concentrations of all analytes were highest in initial runoff from plots, and generally decreased with time. Total nitrogen (mean 7.28, range 0.11-13.27 mg L-1) and total phosphorus (mean 11.60, range 0.06-83.99 mg L-1) concentrations in soil water were between 2 and 10 times greater than in surface runoff, which highlights the potential for nutrient fluxes in interflow (i.e. in the soil above the water table) through the general plantation area. Implications in regard to forest management are discussed, along with results of larger catchment-scale studies.