3 resultados para Exercise -- Health aspects -- Australia

em eResearch Archive - Queensland Department of Agriculture


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Forest health surveillance (FHS) of hardwood plantations commenced in Queensland in 1997 as plantations expanded following a state government planting initiative arising from the national 2020 forest policy vision. The estate was initially characterised by a large number of small plantations (10-50 ha), although this has changed more recently with the concentration of larger plantations in the central coast and South Burnett regions. Due to the disparate nature of the resource, drive- and walkthrough surveys of subsets of plantations have been undertaken in preference to aerial surveys. FHS has been effective in detecting a number of new hardwood pests in Queensland including erinose mites (Rhombacus and Acalox spp.), western white gum plate galler (Ophelimus sp.), Creiis psyllid and bronzing bug (Thaumastocoris sp.), in evaluating their potential impact and assisting in focussing future research efforts. Since 2003 there has been an increased emphasis on training operational staff to take a greater role in identifying and reporting on forest health issues. This has increased their awareness of forest health issues, but their limited time to specifically survey and report on pests and diseases, and high rates of staff turnover, necessitate frequent ongoing training. Consequently, common and widespread problems such as quambalaria shoot blight (Quambalaria pitereka), chrysomelid leaf beetles (mainly Paropsis atomaria) and erinose mites may be under-reported or not reported, and absence data may often not be recorded at all. Comment is made on the future directions that FHS may take in hardwood plantations in Queensland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tick fever is an important disease of cattle where Rhipicephalus (Boophilus) microplus acts as a vector for the three causal organisms Babesia bovis, Babesia bigemina and Anaplasma marginale. Bos indicus cattle and their crosses are more resistant to the clinical effects of infection with B. bovis and B. bigemina than are Bos taurus cattle. Resistance is not complete, however, and herds of B. indicus-cross cattle are still at risk of babesiosis in environments where exposure to B. bovis is light in most years but occasionally high. The susceptibility of B. indicus cattle and their crosses to infection with A. marginale is similar to that of B. taurus cattle. In herds of B. indicus cattle and their crosses the infection rate of Babesia spp. and A. marginale is lowered because fewer ticks are likely to attach per day due to reduced numbers of ticks in the field (long-term effect on population, arising from high host resistance) and because a smaller proportion of ticks that do develop to feed on infected cattle will in turn be infected (due to lower parasitaemia). As a consequence, herds of B. indicus cattle are less likely than herds of B. taurus cattle to have high levels of population immunity to babesiosis or anaplasmosis. The effects of acaricide application on the probability of clinical disease due to anaplasmosis and babesiosis are unpredictable and dependent on the prevalence of infection in ticks and in cattle at the time of application. Attempting to manipulate population immunity through the toleration of specific threshold numbers of ticks with the aim of controlling tick fever is not reliable and the justification for acaricide application should be for the control of ticks rather than for tick fever. Vaccination of B. indicus cattle and their crosses is advisable in all areas where ticks exist, although vaccination against B. bigemina is probably not essential in pure B. indicus animals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hendra virus (HeV) causes highly lethal disease in horses and humans in the eastern Australian states of Queensland (QLD) and New South Wales (NSW), with multiple equine cases now reported on an annual basis. Infection and excretion dynamics in pteropid bats (flying-foxes), the recognised natural reservoir, are incompletely understood. We sought to identify key spatial and temporal factors associated with excretion in flying-foxes over a 2300 km latitudinal gradient from northern QLD to southern NSW which encompassed all known equine case locations. The aim was to strengthen knowledge of Hendra virus ecology in flying-foxes to improve spillover risk prediction and exposure risk mitigation strategies, and thus better protect horses and humans. Monthly pooled urine samples were collected from under roosting flying-foxes over a three-year period and screened for HeV RNA by quantitative RT-PCR. A generalised linear model was employed to investigate spatiotemporal associations with HeV detection in 13,968 samples from 27 roosts. There was a non-linear relationship between mean HeV excretion prevalence and five latitudinal regions, with excretion moderate in northern and central QLD, highest in southern QLD/northern NSW, moderate in central NSW, and negligible in southern NSW. Highest HeV positivity occurred where black or spectacled flying-foxes were present; nil or very low positivity rates occurred in exclusive grey-headed flying-fox roosts. Similarly, little red flying-foxes are evidently not a significant source of virus, as their periodic extreme increase in numbers at some roosts was not associated with any concurrent increase in HeV detection. There was a consistent, strong winter seasonality to excretion in the southern QLD/northern NSW and central NSW regions. This new information allows risk management strategies to be refined and targeted, mindful of the potential for spatial risk profiles to shift over time with changes in flying-fox species distribution.