18 resultados para Excavating machinery
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Considerable export opportunities exist in countries such as Japan, Canada, and Europe (Germany) for peeled rockmelon frozen in quarters or as diced product. Processing of these products is limited because the cost of hand labour for peeling is prohibitive. Consequently, development of mechnanical peeling equipment is essential for Australian industry to compete. In this project, appropriate machinery for the production of a high quality product is being developed, and basic studies in food technology, marketing, and production are being carried out. There are no Australian publications on rockmelon freezing, although fresh fruit quality of various cultivars has been investigated (Mutton, 1978). Very little overseas information on freezing rockmelons has been published (del Rio and Miller, 1979 and Martinez-Javega et al., 1975). In this project, the freezing quality of new rockmnelon and honeydew melon cultivars was evaluated.
Resumo:
Weighing lysimeters are the standard method for directly measuring evapotranspiration (ET). This paper discusses the construction, installation, and performance of two (1.52 m × 1.52 m × 2.13-m deep) repacked weighing lysimeters for measuring ET of corn and soybean in West Central Nebraska. The cost of constructing and installing each lysimeter was approximately US $12,500, which could vary depending on the availability and cost of equipment and labor. The resolution of the lysimeters was 0.0001 mV V-1, which was limited by the data processing and storage resolution of the datalogger. This resolution was equivalent to 0.064 and 0.078 mm of ET for the north and south lysimeters, respectively. Since the percent measurement error decreases with the magnitude of the ET measured, this resolution is adequate for measuring ET for daily and longer periods, but not for shorter time steps. This resolution would result in measurement errors of less than 5% for measuring ET values of ≥3 mm, but the percent error rapidly increases for lower ET values. The resolution of the lysimeters could potentially be improved by choosing a datalogger that could process and store data with a higher resolution than the one used in this study.
Resumo:
Growers working together have proven to be a successful method for improving the utilization of farm resources and accelerating the adoption of the Sugar Yield Decline Joint Venture principles (SYDJV). The Pinnacle Precision Farming Group was formed in 2004 with the aim to bring together the ideas, knowledge and resources of growers in the Herbert region. Along with their common interest in controlled traffic, minimal tillage and crop rotations, the grower group utilize a farm machinery contractor to provide some of their major farming operations. This paper provides an insight into the changes made by the Pinnacle Precision Farming Group and their journey to adopt the new farming system practices. This paper also details the changes made by the group machinery contractor and a comparison of the old and new farming systems used by a group member. A focus point of the document is the impact of the new farming system on the economic, social and environmental components of the farming business. Analysis of the new farming system with a legume crop rotation revealed an increase in the farm gross margin by AU$22 024 and, in addition, a reduction in tractor operation time by 38% across the whole farm. This represents a return on marginal capital of 14.68 times the original capital outlay required by the group member. Using the new farming system without a legume crop will still improve the group members whole of farm gross margin by AU$6 839 and reduce tractor operation time by 43% across the whole farm. The Pinnacle Precision Farming group recognize the need to continually improve their farming businesses and believe that the new farming system principles are critical for the long term viability of the industry. [U$1 = AU$1.19].
Resumo:
Swordfish are kept chilled, not frozen, for up to 15 days before being unloaded at Australian ports. Swordfish landed alive, and to a lesser extent prerigor, have better quality when unloaded. Warmer fishing waters did not lead to poorer quality at unloading. There was a serious loss of quality during long fishing trips. Sex had no influence on swordfish quality. Three methods of chilling were evaluated: refrigerated seawater (RSW) chilling for up to 2 days followed by storage under ice, refrigerated brine (seawater with extra salt added) for up to 2 days followed by storage in a freshwater ice slurry, and ice slurry (freshwater ice mixed with seawater) for up to 2 days followed by storage under ice only. Two fishing trips were monitored for each method. The freshness indicator K value was used to determine which method produced the best quality swordfish when unloaded at the factory. Storage method played a larger role in quality loss than capture conditions. Refrigerated brine produced the best quality swordfish when the machinery functioned properly closely followed by RSW. Ice slurry chilling of large fish such as swordfish exhibited initial delays in the reduction of core temperature which led to lower quality. This method could be improved with the addition of mechanical circulation. Mechanical problems, which resulted in minor increases of temperature during brine storage, led to a much larger loss of quality than would be expected.
Resumo:
An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.
Resumo:
Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.
Resumo:
To experimentally investigate the effect of the “SKIM” mechanical foam fractionator on suspended material and the nutrient levels in prawn farm effluent, a series of standardised short-term treatments were applied to various effluent types in a static 10,000-litre water body. Prawn pond effluents were characterised by watercolour and dominance of phytoplankton species. Three effluent types were tested, namely 1) particulate-rich effluent with little apparent phytoplankton, 2) green mircoalgal bloom predominately made up of single celled phytoplankton, and 3) brown microalgal bloom with higher prevalence of diatoms. The effluent types were similar (P>0.05) in non-volatile particulate material, and nitrate/nitrite but varied from each other in the following ways: 1) The particulate-rich effluents were lower (P<0.05) in volatile solids (compared to brown blooms), total Kjeldahl nitrogen, dissolved organic nitrogen, dissolved organic phosphorus and chlorophyll a (compared to both green and brown blooms). 2) The brown blooms were higher (P<0.05) in ammonia (compared to green blooms), total nitrogen and total phosphorus (compared to both green and particulate-rich effluent), but were lower (P<0.05) in inorganic phosphorus (compared to both green and particulate-rich effluent). 3) The green blooms were higher (P<0.05) in dissolved (both organic and inorganic) phosphorus (compared to both brown and particulate-rich effluents). Although the effluent types varied significantly in these aspects the effect of the Skim treatment was similar for all parameters measured except total phosphorus. Bloom type and Skim-treatment period significantly (P<0.05) affected total Kjeldahl phosphorus concentrations. For all effluent types there was a continuous significant reduction (P<0.05) in total Kjeldahl phosphorus during the initial 6-hour treatment period. Levels of total suspended solids and volatile suspended solids in all effluent types were significantly (P<0.05) reduced in the first 2 hours but not thereafter. Non-volatile suspended solids were also significantly (P<0.05) reduced in the first 2 hours (30 to 40 % reduction) and a further 40% reduction occurred in the particulate-rich effluent over the next 2 hours. Mean values for total ammonia, dissolved organic nitrogen, total Kjeldahl nitrogen, total nitrogen, chlorophyll a and dissolved organic or inorganic phosphorus levels were not significantly (P>0.05) affected by the Skim unit in any bloom type during the initial 6 hours of testing. Nevertheless, non-significant nitrogen reductions did occur. Foam production by the Skim unit varied with different blooms, resulting in different concentrate volumes and different end points for separate experiments. Concentrate volumes were generally high for the particulate-rich and green blooms (175 – 370 litres) and low for the brown blooms (25 – 80 litres). This was due to the low tendency of the brown bloom to produce foam. This generated higher nutrient concentrations in the associated condensed foam, but may have limited the treatment efficiency. The results suggest that in this application, the Skim unit did not remove micro-algae as effectively as was anticipated. However, it was effective at removing other suspended solids. Considering these attributes and the other uses of this machinery documented by the manufactures, the unit’s oxygenation mixing capacities coupled with inorganic solids removal may provide a suitable mechanism for construction of a continuously mixed bioreactor that utilises the filtration and profit making abilities of bivalves.
Resumo:
Project Objectives: 1. Improving yield and water use efficiency of the wheat crop, the backbone of the Australia grains industry, by better matching management, variety, soil and climate. The aim is thus increasing kg grain/ha per mm evapotranspiration and kg grain/ha per mm rain. 2. Improving land and water productivity and profit by better arrangement of the components of the cropping system. This involves better allocation of farm resources (land, water, machinery, labour) and identifying strategies that account for trade-offs between profit and risk. The aim is thus improving $/ha per year and mm rain in a risk framework.
Resumo:
This project aims to develop integrated irrigation and nutrition management strategies under limited water for irrigators currently investing in overhead irrigation systems (CPLM) to minimize the learning lag in their use and optimize crop and economic performance.
Resumo:
This paper examines the idea that plasticity in farm management introduces resilience to change and allows farm businesses to perform when operating in highly variable environments. We also argue for the need to develop and apply more integrative assessments of farm performance that combine the use of modelling tools with deliberative processes involving farmers and researchers in a co-learning process, to more effectively identify and implement more productive and resilient farm businesses. In a plastic farming system, farm management is highly contingent on environmental conditions. In plastic farming systems farm managers constantly vary crops and inputs based on the availability of limited and variable resources (e.g. land, water, finances, labour, machinery, etc.), and signals from its operating environment (e.g. climate, markets), with the objective of maximising a number of, often competing, objectives (e.g. maximise profits, minimise risks, etc.). In contrast in more rigid farming systems farm management is more calendar driven and relatively fixed sequences of crops are regularly followed over time and across the farm. Here we describe the application of a whole farm simulation model to (i) compare, in silico, the sensitivity of two farming systems designs of contrasting levels of plasticity, operating in two contrasting environments, when exposed to a stressor in the form of climate change scenarios;(ii) investigate the presence of interactions and feedbacks at the field and farm levels capable of modifying the intensity and direction of the responses to climate signals; and (iii) discuss the need for the development and application of more integrative assessments in the analysis of impacts and adaptation options to climate change. In both environments, the more plastic farm management strategy had higher median profits and was less risky for the baseline and less intensive climate change scenarios (2030). However, for the more severe climate change scenarios (2070), the benefit of plastic strategies tended to disappear. These results suggest that, to a point, farming systems having higher levels of plasticity would enable farmers to more effectively respond to climate shifts, thus ensuring the economic viability of the farm business. Though, as the intensity of the stress increases (e.g. 2070 climate change scenario) more significant changes in the farming system might be required to adapt. We also found that in the case studies analysed here, most of the impacts from the climate change scenarios on farm profit and economic risk originated from important reductions in cropping intensity and changes in crop mix rather than from changes in the yields of individual crops. Changes in cropping intensity and crop mix were explained by the combination of reductions in the number of sowing opportunities around critical times in the cropping calendar, and to operational constraints at the whole farm level i.e. limited work capacity in an environment having fewer and more concentrated sowing opportunities. This indicates that indirect impacts from shifts in climate on farm operations can be more important than direct impacts from climate on the yield of individual crops. The results suggest that due to the complexity of farm businesses, impact assessments and opportunities for adaptation to climate change might also need to be pursued at higher integration levels than the crop or the field. We conclude that plasticity can be a desirable characteristic in farming systems operating in highly variable environments, and that integrated whole farm systems analyses of impacts and adaptation to climate change are required to identify important interactions between farm management decision rules, availability of resources, and farmer's preference.
Resumo:
Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 2000. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2000. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of wildflowers. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.
Resumo:
The method used to manage a fallow can influence your overall farm profitability. The benefits of a well managed fallow include improved soil health, reduced weed control costs, a reduction in the number of machinery operations and an increase in sugarcane productivity. Growers generally have two main options for managing their fallow; 1) bare fallow or 2) rotational crop. A bare fallow predominantly involves the use of tillage or herbicides to keep the block free of weeds and volunteer cane. Growing a rotational crop generally uses legumes like soybeans or cowpeas because of their soil health and nitrogen benefits. This paper looks into some of these methods and the flow on effects on farm profitability. Fallow management should never be viewed in isolation, as it is an integral part of the cane farming system. In this analysis we will investigate the effect of fallow management and farming system practices on the whole of farm profitability. There are many factors to consider when looking at different fallow management options. These include the type of farming system practices used and the suitability of a legume crop to a particular situation. Legume crops may not be suited to all situations, therefore it is recommended to consult with your local agronomist for more specific advice. One method of examining the options is to work through an example. In this case we will look at four options that are based on some common fallow management and farming system practices used in the Herbert region.
Resumo:
Australia’s utility pole network is aging and approaching its end of life. It is estimated that 70% of the 5 million poles currently in-service nationally were installed within the 20 years following the end of World War II and require replacement or remedial maintenance. Additionally, an estimated 21,700 high-durability new poles are required each year to support the expansion of the energy network. Utility poles were traditionally cut from native forest hardwood species. However, due to agreements which progressively phase out logging of native forests around Australia, finding new sources for utility poles presents a challenge. This paper presents the development of veneer based composite hardwood hollow utility poles manufactured from mid-rotation Gympie messmate (Eucalyptus cloeziana) plantation thinned trees (also referred to as “thinning”), as an alternative to solid hardwood poles. The incentives behind the project and benefits of the proposed products are introduced in the paper. Small diameter poles, of nominal 115 mm internal diameter and 15 mm wall-thickness, were manufactured in two half-poles butt jointed together, using 9 hardwood veneers per half-pole. The poles were tested in bending and shear, and experimental test results are presented. The mechanical performance of the hollow poles is discussed and compared to hardwood poles sourced from mature trees and of similar size. Additionally, the required dimensions of the proposed hollow pole to replace actual solid poles are estimated. Results show that the proposed product represents a viable technical solution to the current shortage of utility poles. Future research and different options for improving the current concept are proposed in order to provide a more reliable and cost effective product for structural and architectural applications in general.
Resumo:
In Australia, plantation forests have increased in area by around 50% in the last 10 years. While this expansion has seen a modest 8% increase for softwoods, hardwood plantations have dramatically increased by over 150%. Hardwood plantations grown for high quality sawn timber are slow to mature, with a crop rotation time potentially reaching 35 years. With this long lead-time, each year the risk from fire, pests and adverse weather events dramatically increases, while not translating into substantially higher financial returns to the grower. To justify continued expansion of Australia's current hardwood plantation estate, it is becoming necessary to develop higher value end-uses for both pulpwood and smaller 'sawlog' resources. The use of the low commercial value stems currently culled during thinning appears to be a necessary option to improve the industry profitability and win new markets. This paper provides background information on Australian forests and plantations and gives an overview of potential uses of Australian hardwood plantation thinning logs, as their mechanical properties. More specifically, this paper reports on the development of structural Veneer Based Composite (VBC) products from hardwood plantation thinning logs, taking advantage of a recent technology developed to optimise the processing of this resource. The process used to manufacture a range of hollow-form veneer laminated structural products is presented and the mechanical characteristics of these products are investigated in the companion paper. The market applications and future opportunities for the proposed products are also discussed, as potential benefits to the timber industry. © RILEM 2014.
Resumo:
Development of no-tillage (NT) farming has revolutionized agricultural systems by allowing growers to manage greater areas of land with reduced energy, labour and machinery inputs to control erosion, improve soil health and reduce greenhouse gas emission. However, NT farming systems have resulted in a build-up of herbicide-resistant weeds, an increased incidence of soil- and stubble-borne diseases and enrichment of nutrients and carbon near the soil surface. Consequently, there is an increased interest in the use of an occasional tillage (termed strategic tillage, ST) to address such emerging constraints in otherwise-NT farming systems. Decisions around ST uses will depend upon the specific issues present on the individual field or farm, and profitability and effectiveness of available options for management. This paper explores some of the issues with the implementation of ST in NT farming systems. The impact of contrasting soil properties, the timing of the tillage and the prevailing climate exert a strong influence on the success of ST. Decisions around timing of tillage are very complex and depend on the interactions between soil water content and the purpose for which the ST is intended. The soil needs to be at the right water content before executing any tillage, while the objective of the ST will influence the frequency and type of tillage implement used. The use of ST in long-term NT systems will depend on factors associated with system costs and profitability, soil health and environmental impacts. For many farmers maintaining farm profitability is a priority, so economic considerations are likely to be a primary factor dictating adoption. However, impacts on soil health and environment, especially the risk of erosion and the loss of soil carbon, will also influence a grower’s choice to adopt ST, as will the impact on soil moisture reserves in rainfed cropping systems.