37 resultados para Evaporation and drying

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison—litres of water per square metre of poultry shed floor area, L/m2, assuming a litter depth of 5 cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2 L/m2/day. Over a 56 day grow-out, the total quantity of water added to the litter was estimated to be 104 L/m2. Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25 °C and 50% relative humidity ranged from 0.5 to 10 L/m2/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterisation of a number of key wood properties utilising ‘state of the art’ tools was achieved for four commercial Australian hardwood species: Corymbia citriodora, Eucalyptus pilularis, Eucalyptus marginata and Eucalyptus obliqua. The wood properties were measured for input into microscopic (cellular level) and macroscopic (board level) vacuum drying models currently under development. Morphological characterisation was completed using a combination of ESEM, optical microscopy and a custom vector-based image analysis software. A clear difference in wood porosity, size, wall thickness and orientation was evident between species. Wood porosity was measured using a combination of fibre and vessel porosity. A highly sensitive microbalance and scanning laser micrometres were used to measure loss of moisture content in conjunction with directional shrinkage on micro-samples of E. obliqua to investigate the validity of measuring collapse-free shrinkage in very thin sections. Collapse-free shrinkage was characterised, and collapse propensity was verified when testing thicker samples. Desorption isotherms were calculated for each species using wood–water relations data generated from shrinkage experiments. Fibre geometry and wood shrinkage anisotropy were used to explain the observed difficulty in drying of the different species in terms of collapse and drying stress-related degrade.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nitrogen-driven trade-off between nitrogen utilisation efficiency (yield per unit nitrogen uptake) and water use efficiency (yield per unit evapotranspiration) is widespread and results from well established, multiple effects of nitrogen availability on the water, carbon and nitrogen economy of crops. Here we used a crop model (APSIM) to simulate the yield, evapotranspiration, soil evaporation and nitrogen uptake of wheat, and analysed yield responses to water, nitrogen and climate using a framework analogous to the rate-duration model of determinate growth. The relationship between modelled grain yield (Y) and evapotranspiration (ET) was fitted to a linear-plateau function to derive three parameters: maximum yield (Ymax), the ET break-point when yield reaches its maximum (ET#), and the rate of yield response in the linear phase ([Delta]Y/[Delta]ET). Against this framework, we tested the hypothesis that nitrogen deficit reduces maximum yield by reducing both the rate ([Delta]Y/[Delta]ET) and the range of yield response to evapotranspiration, i.e. ET# - Es, where Es is modelled median soil evaporation. Modelled data reproduced the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency in a transect from Horsham (36°S) to Emerald (23°S) in eastern Australia. Increasing nitrogen supply from 50 to 250 kg N ha-1 reduced yield per unit nitrogen uptake from 29 to 12 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 15 kg grain ha-1 mm-1 at Emerald. The same increment in nitrogen supply reduced yield per unit nitrogen uptake from 30 to 25 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 25 kg grain ha-1 mm-1 at Horsham. Maximum yield ranged from 0.9 to 6.4 t ha-1. Consistent with our working hypothesis, reductions in maximum yield with nitrogen deficit were associated with both reduction in the rate of yield response to ET and compression of the range of yield response to ET. Against the notion of managing crops to maximise water use efficiency in low rainfall environments, we emphasise the trade-off between water use efficiency and nitrogen utilisation efficiency, particularly under conditions of high nitrogen-to-grain price ratio. The rate-range framework to characterise the relationship between yield and evapotranspiration is useful to capture this trade-off as the parameters were responsive to both nitrogen supply and climatic factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wet litter in meat chicken sheds occurs as the result of multiple, interrelated causes. This paper discusses some of the sources of water in meat chicken sheds, the properties of litter and the contribution of the shed micro-environment. By increasing awareness of the factors associated with wet litter, it will empower the chicken meat industry with knowledge to identify causes and address local incidences through improved litter management. In general, wet litter will be caused by excess water going into the litter, insufficient evaporation and/or limited water holding capability of the litter. Some strategies to improve the effectiveness of ventilation to maintain litter dryness are discussed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the influence of rainfall patterns on the water-use efficiency of wheat in a transect between Horsham (36°S) and Emerald (23°S) in eastern Australia. Water-use efficiency was defined in terms of biomass and transpiration, WUEB/T, and grain yield and evapotranspiration, WUEY/ET. Our working hypothesis is that latitudinal trends in WUEY/ET of water-limited crops are the complex result of southward increasing WUEB/T and soil evaporation, and season-dependent trends in harvest index. Our approach included: (a) analysis of long-term records to establish latitudinal gradients of amount, seasonality, and size-structure of rainfall; and (b) modelling wheat development, growth, yield, water budget components, and derived variables including WUEB/T and WUEY/ET. Annual median rainfall declined from around 600 mm in northern locations to 380 mm in the south. Median seasonal rain (from sowing to harvest) doubled between Emerald and Horsham, whereas median off-season rainfall (harvest to sowing) ranged from 460 mm at Emerald to 156 mm at Horsham. The contribution of small events (≤ 5 mm) to seasonal rainfall was negligible at Emerald (median 15 mm) and substantial at Horsham (105 mm). Power law coefficients (τ), i.e. the slopes of the regression between size and number of events in a log-log scale, captured the latitudinal gradient characterised by an increasing dominance of small events from north to south during the growing season. Median modelled WUEB/T increased from 46 kg/ha.mm at Emerald to 73 kg/ha.mm at Horsham, in response to decreasing atmospheric demand. Median modelled soil evaporation during the growing season increased from 70 mm at Emerald to 172 mm at Horsham. This was explained by the size-structure of rainfall characterised with parameter τ, rather than by the total amount of rainfall. Median modelled harvest index ranged from 0.25 to 0.34 across locations, and had a season-dependent latitudinal pattern, i.e. it was greater in northern locations in dry seasons in association with wetter soil profiles at sowing. There was a season-dependent latitudinal pattern in modelled WUEY/ET. In drier seasons, high soil evaporation driven by a very strong dominance of small events, and lower harvest index override the putative advantage of low atmospheric demand and associated higher WUEB/T in southern locations, hence the significant southwards decrease in WUEY/ET. In wetter seasons, when large events contribute a significant proportion of seasonal rain, higher WUEB/T in southern locations may translate into high WUEY/ET. Linear boundary functions (French-Schultz type models) accounting for latitudinal gradients in its parameters, slope, and x-intercept, were fitted to scatter-plots of modelled yield v. evapotranspiration. The x-intercept of the model is re-interpreted in terms of rainfall size structure, and the slope or efficiency multiplier is described in terms of the radiation, temperature, and air humidity properties of the environment. Implications for crop management and breeding are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foraging by feral pigs can strongly affect wetland vegetation assemblages and so too wider ecological processes, although their effects on freshwater ecosystems have seldom been tudied. We assessed the ecological effects of pig foraging in replicate fenced and unfenced ephemeral floodplain lagoons in tropical north-eastern Australia. Pig foraging activities in unfenced lagoons caused major changes to aquatic macrophyte communities and as a consequence, to the proportional amounts of open water and bare ground. The destruction of macrophyte communities and upheaval of wetland sediments significantly affected wetland turbidity, and caused prolonged anoxia and pH imbalances in the unfenced treatments. Whilst fencing of floodplain lagoons will protect against feral pig foraging activities, our repeated measures of many biological, physical and chemical parameters inferred that natural seasonal (i.e. temporal) effects had a greater influence on these variables than did pigs. To validate this observation requires measuring how these effects are influenced by the seemingly greater annual disturbance regime of variable flooding and drying in this tropical climate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was parameterised and subsequently used to predict biomass production, yield, crop water and nitrogen (N) use, as well as long-term soil water and organic matter dynamics in wheat/chickpea systems at Tel Hadya, north-western Syria. The model satisfactorily simulated the productivity and water and N use of wheat and chickpea crops grown under different N and/or water supply levels in the 1998-99 and 1999-2000 experimental seasons. Analysis of soil-water dynamics showed that the 2-stage soil evaporation model in APSIM's cascading water-balance module did not sufficiently explain the actual soil drying following crop harvest under conditions where unused water remained in the soil profile. This might have been related to evaporation from soil cracks in the montmorillonitic clay soil, a process not explicitly simulated by APSIM. Soil-water dynamics in wheat-fallow and wheat-chickpea rotations (1987-98) were nevertheless well simulated when the soil water content in 0-0.45 m soil depth was set to 'air dry' at the end of the growing season each year. The model satisfactorily simulated the amounts of NO3-N in the soil, whereas it underestimated the amounts of NH 4-N. Ammonium fixation might be part of the soil mineral-N dynamics at the study site because montmorillonite is the major clay mineral. This process is not simulated by APSIM's nitrogen module. APSIM was capable of predicting long-term trends (1985-98) in soil organic matter in wheat-fallow and wheat-chickpea rotations at Tel Hadya as reported in literature. Overall, results showed that the model is generic and mature enough to be extended to this set of environmental conditions and can therefore be applied to assess the sustainability of wheat-chickpea rotations at Tel Hadya.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to gain an understanding for drying sawn timber produced from fast-grown, well-managed Queensland hardwood plantations using accelerated drying methods. Due to limited resources, this was a preliminary study and further work will be required to optimize schedules for industrial implementation. Three conventional kiln trials, including two for 38-mm-thick, 19-year-old plantation Gympie messmate (Eucalyptus cloeziana F. Muell.) and one for 25mm thick, 15-year-old plantation red mahogany (Eucalyptus pellita F. Muell.), and two vacuum kiln drying trials, one each for 38- and 25mm thick Gympie messmate, were conducted. Measurements of final cross-sectional moisture content, moisture content gradient, residual drying stress, and internal and surface checking were used to quantify dried quality. Drying schedules were chosen based on either existing published schedules or, in the case of the vacuum drying trials, existing schedules for species with similar wood density and dying degrade properties, or manipulated schedules based on the results of trials conducted during this study. The findings indicate that both species can be dried using conventional drying techniques with acceptable grade quality in approximately 75 percent of the drying time that industry is currently achieving when drying native forest timber of the same species. The vacuum drying time was 60 percent less than conventional drying for 38-mm-thick, 19-year-old Gympie messmate, although drying quality needs improving. The findings have shown that through careful schedule manipulation and adjustment, the grade quality can be optimized to suit the desired expectation. Additional research is required to further optimize the schedules to ensure acceptable grade qualities can be reliably achieved across all drying criteria and exploit opportunities to reduce drying times further.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Characterisation and investigation of a number of key wood properties, critical for further modelling work, has been achieved. The key results were: • Morphological characterisation, in terms of fibre cell wall thickness and porosity, was completed. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Results were consistent with published data for other species. • Viscoelastic properties of wood were shown to differ greatly between species and in the radial and tangential directions, largely due to anatomical and chemical variations. Consistent with published data, the radial direction shows higher stiffness, internal friction and glass transition temperature than the tangential directions. The loss of stiffness over the measured temperature range was greater in the tangential direction than the radial direction. Due to time dependant molecular relaxation, the storage modulus and glass transition temperature decreased with decreasing test frequency, approaching an asymptotic limit. Thus the viscoelastic properties measured at lower frequencies are more representative of static material. • Dynamic interactions between relative humidity, moisture content and shrinkage of four Australian hardwood timbers can be accurately monitored on micro-samples using a specialised experimental device developed by AgroParisTech – ENGREF. The device generated shrinkage data that varied between species but were consistent (repeatable) within a species. Collapse shrinkage was clearly evident with this method for Eucalyptus obliqua, but not with other species, consistent with industrial seasoning experience. To characterise the wood-water relations of this species, free of collapse, thinner sample sections (in the R-T plane) should be used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Sedimentation and Evaporation Pond System (SEPS) is a low-capital effluent management system based primarily on shallow pond sedimentation of effluent solids and annual evaporation of the liquid to retrieve dried solids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The results of drying trials show that vacuum drying produces material of the same or better quality than is currently being produced by conventional methods within 41 to 66 % of the drying time, depending on the species. Economic analysis indicates positive or negative results depending on the species and the size of drying operation. Definite economic benefits exist by vacuum drying over conventional drying for all operation sizes, in terms of drying quality, time and economic viability, for E. marginata and E. pilularis. The same applies for vacuum drying C. citriodora and E. obliqua in larger drying operations (kiln capacity 50 m3 or above), but not for smaller operations at this stage. Further schedule refinement has the ability to reduce drying times further and may improve the vacuum drying viability of the latter species in smaller operations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Astaxanthin is a powerful antioxidant with various health benefits such as prevention of age-related macular degeneration and improvement of the immune system, liver and heart function. To improve the post-harvesting stability of astaxanthin used in food, feed and nutraceutical industries, the biomass of the high astaxanthin producing alga Haematococcus pluvialis was dried by spray- or freeze-drying and under vacuum or air at − 20 °C to 37 °C for 20 weeks. Freeze-drying led to 41 higher astaxanthin recovery compared to commonly-used spray-drying. Low storage temperature (− 20 °C, 4 °C) and vacuum-packing also showed higher astaxanthin stability with as little as 12.3 ± 3.1 degradation during 20 weeks of storage. Cost-benefit analysis showed that freeze-drying followed by vacuum-packed storage at − 20 °C can generate AUD600 higher profit compared to spray-drying from 100 kg H. pluvialis powder. Therefore, freeze-drying can be suggested as a mild and more profitable method for ensuring longer shelf life of astaxanthin from H. pluvialis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluidised bed-heat pump drying technology offers distinctive advantages over the existing drying technology employed in the Australian food industry. However, as is the case with many other examples of innovations that have had clear relative advantages, the rates of adoption and diffusion of this technology have been very slow. "Why does this happen?" is the theme of this research study that has been undertaken with an objective to analyse a range of issues related to the market acceptance of technological innovations. The research methodology included the development of an integrated conceptual model based on an extensive review of literature in the areas of innovation diffusion, technology transfer and industrial marketing. Three major determinants associated with the market acceptance of innovations were identified as the characteristics of the innovation, adopter information processing capability and the influence of the innovation supplier on the adoption process. This was followed by a study involving more than 30 small and medium enterprises identified as potential adopters of fluidised bed-heat pump drying technology in the Australian food industry. The findings revealed that judgment was the key evaluation strategy employed by potential adopters in the particular industry sector. Further, it was evidenced that the innovations were evaluated against a predetermined criteria covering a range of aspects with emphasis on a selected set of attributes of the innovation. Implication of these findings on the commercialisation of fluidised bed-heat pump drying technology was established, and a series of recommendations was made to the innovation supplier (DPI/FT) enabling it to develop an effective commercialisation strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seed cotton yield and morphological changes in leaf growth were examined under drying soil with different phosphorus (P) concentrations in a tropical climate. Frequent soil drying is likely to induce a decrease in nutrients particularly P due to reduced diffusion and poor uptake, in addition to restrictions in available water, with strong interactive effects on plant growth and functioning. Increased soil P in field and in-ground soil core studies increased the seed cotton yield and related morphological growth parameters in a drying soil, with hot (daily maximum temperature >33°C) and dry conditions (relative humidity, 25% to 35%), particularly during peak boll formation and filling stage. The soil water content in the effective rooting zone (top 0.4 m) decreased to -1.5 MPa by day 5 of the soil drying cycle. However, the increased seed cotton yield for the high-P plants was closely related to increasing leaf area with increased P supply. Plant height, leaf fresh mass and leaf area per plant were positively related to the leaf P%, which increased with increasing P supply. Low P plants were lower in plant height, leaf area, and leaf tissue water in the drying soil. Individual leaf area and the water content of the fresh leaf (ratio of dry mass to fresh mass) were significantly dependent on leaf P%.