21 resultados para Equine laminitis
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In the article 'Fluorescence in situ hybridization analysis of hindgut bacteria associated with the development of equine laminitis' (Milinovich et al., 2007), it is found that with reference to Horse 1, the histological signs of laminitis were first observed at 12 h post-oligofructose administration, and not 30 h as was indicated in the Results section under the subheading 'Induction of Laminitis' and in Fig. 1.
Resumo:
Alimentary carbohydrate overload is a significant cause of laminitis in horses and is correlated with drastic shifts in the composition of hindgut microbiota. Equine hindgut streptococcal species (EHSS), predominantly Streptococcus lutetiensis, have been shown to be the most common microorganisms culturable from the equine caecum prior to the onset of laminitis. However, the inherent biases of culture-based methods are estimated to preclude up to 70% of the normal caecal microbiota. The objective of this study was to evaluate bacterial population shifts occurring in the equine caecum throughout the course of oligofructose-induced laminitis using several culture-independent techniques and to correlate these with caecal lactate, volatile fatty acid and degrees of polymerization 3-7 fructo-oligosaccharide concentrations. Our data conclusively show that of the total microbiota present in the equine hindgut, the EHSS S. lutetiensis is the predominant microorganism that proliferates prior to the onset of laminitis, utilizing oligofructose to produce large quantities of lactate. Population shifts in lactobacilli and Escherichia coli subpopulations occur secondarily to the EHSS population shifts, thus confirming that lactobacilli and coliforms have no role in laminitis. A large, curved, Gram-negative rod previously observed during the early phases of laminitis induction was most closely related to the Anaerovibrio genus and most likely represents a new, yet to be cultured, genus and species. Correlation of fluorescence in situ hybridization and quantitative real-time PCR results provide evidence supporting the hypothesis that laminitis is associated with the death en masse and rapid cell lysis of EHSS. If EHSS are lysed, liberated cellular components may initiate laminitis.
Resumo:
Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.
Resumo:
Twelve nasal swabs were collected from yearling horses with respiratory distress and tested for equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4) by real-time PCR targeting the glycoprotein B gene. All samples were negative for EHV-1; however, 3 were positive for EHV-4. When these samples were tested for EHV-2 and EHV-5 by PCR, all samples were negative for EHV-2 and 11 were positive for EHV-5. All three samples that were positive for EHV-4 were also positive for EHV-5. These three samples gave a limited CPE in ED cells reminiscent of EHV-4 CPE. EHV-4 CPE was obvious after 3 days and was characterised by syncytia. None of the samples produced cytopathic effect (CPE) on African green monkey kidney (Vero) cells or hamster kidney (BSR) cells. Four of the samples, which were positive in the EHV-5 PCR, produced CPE on rabbit kidney (RK13) cells and equine dermis (ED) cells. EHV-5 CPE on both cell lines was slow and was apparent after four 7-day passages. On RK13 cells, the CPE was characteristic of equid herpesvirus, with the formation of syncytia. However, in ED cells, the CPE was characterised by ring-shaped syncytia. For the first time, a case of equine respiratory disease involving dual infection with EHV-4 and EHV-5 has been reported in Queensland (Australia). This was shown by simultaneously isolating EHV-4 and EHV-5 from clinical samples. EHV5 was recovered from all samples except one, suggesting that EHV5 was more prevalent in young horses than EHV2.
Resumo:
Letter to the editor.
Resumo:
Until August 2007, Australia was one of only three countries internationally recognised to be free of equine influenza (EI). This report documents the diagnosis of the first cases of EI in Australian horses and summarises the investigations that took place over the next 5 days. During that time, a multifocal outbreak was identified across eastern New South Wales and south-eastern Queensland. The use of an influenza type A pan-reactive real-time reverse transcription polymerase chain reaction allowed rapid confirmation of suspect cases of EI.
Resumo:
This section outlines the most important issues addressed in the management of the response in the two infected states, New South Wales and Queensland. There were differences in the management of the response between the states for logistic, geographic and organisation structural reasons. Issues included the use of control centres, information centres, the problems associated with the lack of trained staff to undertake all the roles, legislative issues, controls of horse movements, the availability of resources for adequate surveillance, the challenges of communication between disparate groups and tracing the movements of both humans and horses.
Resumo:
The equine influenza (EI) outbreak presented many challenges that required high-level coordination and decision making, as well as the development of new approaches for satisfactory and consistent resolution. This paper outlines the elements of the national coordination arrangements, preparatory arrangements in place prior to the outbreak that facilitated national coordination, and some of the issues faced and resolved in the response.
Resumo:
An outbreak of equine influenza (EI) caused by influenza A H3N8 subtype virus occurred in the Australian states of Queensland and New South Wales in August 2007. Infection in the Australian horse population was associated with the introduction of infection by horses from overseas. The first case of EI in Queensland was detected on 25 August 2007 at an equestrian sporting event. Infection subsequently spread locally and to other clusters through horse movements prior to the implementation of an official standstill. There were five main clusters of infected properties during this outbreak and several outliers, which were investigated to find the potential mechanism of disease spread. To contain the outbreak, Queensland was divided into infection status zones, with different movement controls applied to each zone. Vaccination was implemented strategically in infected areas and within horse subpopulations. Control and eventual eradication of EI from Queensland was achieved through a combination of quarantine, biosecurity measures, movement control, rapid diagnostic testing and vaccination.
Resumo:
The aim of this study was to investigate the effects on follicle stimulating hormone (FSH) secretion and dominant follicle (OF) growth, of treatment of Bos indicus heifers with different combinations of intra-vaginal progesterone releasing devices (IPRD), oestradiol benzoate (ODB), PGF(2 alpha), and eCG. Two-year-old Brahman (BN; n=30) and Brahman-cross (BNX; n=34) heifers were randomly allocated to three IPRD-treatments: (i) standard-dose IPRD [CM 1.56 g; 1.56 g progesterone (P-4); n = 17]; (ii) half-dose IPRD (CM 0.78 g; 0.78 g p(4); n=15); (iii) half-dose IPRD + 300 IU eCG at IPRD removal (CM 0.78 g+G; n=14); and, (iv) non-IPRD control (2 x PGF(2 alpha); n=18) 500 mu g cloprostenol on Days -16 and -2. IPRD-treated heifers received 250 mu g PGF(2 alpha) at IPRD insertion (Day 10) and IPRD removal (Day -2) and 1 mg ODB on Day -10 and Day -1. Follicular dynamics were monitored daily by trans-rectal ultrasonography from Day -10 to Day 1. Blood samples for determination of P-4 were collected daily and samples for FSH determination were collected at 12 h intervals from Day -9 to Day -2. A significant surge in concentrations of FSH was observed in the 2 x PGF(2 alpha), treatment 12 h prior and 48 h after follicular wave emergence, but not in the IPRD-treated heifers. Estimated mean concentrations of total plasma P-4 during the 8 days of IPRD insertion was greater (P<0.001) in the CM 1.56 g P-4 treated heifers compared to the CM 0.78 g P-4 treated heifers (18.38 ng/ml compared with 11.09 ng/ml, respectively). A treatment by genotype interaction (P=0.036) was observed in the mean plasma P4 concentration in heifers with no CL during IPRD insertion, whereby BN heifers in the CM 1.56 g treatment had greater plasma P-4 than the BNX heifers on Days-9, -7, -6, -5, and -4. However, there was no genotype effect in the CM 0.78 g +/- G or the 2 x PGF(2 alpha) treatment. Treatment had no effect on the DF growth from either day of wave emergence (P=0.378) or day of IPRD removal (P=0.780) to ovulation. This study demonstrates that FSH secretion in B. indicus heifers treated with a combination of IPRD's and ODB to synchronise ovulation was suppressed during the period of IPRD insertion but no significant effect on growth of the DF was observed. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Background Equine multinodular pulmonary fibrosis (EMPF) is a recently described form of interstitial pneumonia associated with the presence of equine herpesvirus type 5 (EHV-5). Since 2007, several case reports from America, Europe and the United Kingdom have further characterised the clinical presentation and laboratory findings of this disease. Case reports Three Thoroughbred broodmares were diagnosed with EMPF. Diagnosis was based on lung histopathology and positive identification of EHV-5 using PCR DNA amplification. There was multiple organ involvement in all three cases, including identification of EHV-5 in hepatic tissue in one case. Two of the three horses died. Treatment with acyclovir was unsuccessful in one horse and one horse survived without antiviral or corticosteroid treatment. Conclusion This case series is, to the authors' knowledge, the first report of EMPF in Australia and adds to the clinical description of the disease.
Resumo:
A multiplex real-time PCR was designed to detect and differentiate equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4). The PCR targets the glycoprotein B gene of EHV-1 and EHV-4. Primers and probes were specific to each equine herpesvirus type and can be used in monoplex or multiplex PCRs, allowing the differentiation of these two closely related members of the Alphaherpesvirinae. The two probes were minor-groove binding probes (MGB?) labelled with 6-carboxy-fluorescein (FAM?) and VIC® for detection of EHV-1 and EHV-4, respectively. Ten EHV-1 isolates, six EHV-1 positive clinical samples, one EHV-1 reference strain (EHV-1.438/77), three EHV-4 positive clinical samples, two EHV-4 isolates and one EHV-4 reference strain (EHV-4 405/76) were included in this study. EHV-1 isolates, clinical samples and the reference strain reacted in the EHV-1 real-time PCR but not in the EHV-4 real-time PCR and similarly EHV-4 clinical samples, isolates and the reference strain were positive in the EHV-4 real-time PCR but not in the EHV-1 real-time PCR. Other herpesviruses, such as EHV-2, EHV-3 and EHV-5 were all negative when tested using the multiplex real-time PCR. When bacterial pathogens and opportunistic pathogens were tested in the multiplex real-time PCR they did not react with either system. The multiplex PCR was shown to be sensitive and specific and is a useful tool for detection and differentiation of EHV-1 and EHV-4 in a single reaction. A comprehensive equine herpesvirus disease investigation procedure used in our laboratory is also outlined. This procedure describes the combination of alphaherpesvirus multiplex real-time PCR along with existing gel-based PCRs described by other authors.
A method for mapping the distribution and density of rabbits and other vertebrate pests in Australia
Resumo:
The European wild rabbit has been considered Australia’s worst vertebrate pest and yet little effort appears to have gone into producing maps of rabbit distribution and density. Mapping the distribution and density of pests is an important step in effective management. A map is essential for estimating the extent of damage caused and for efficiently planning and monitoring the success of pest control operations. This paper describes the use of soil type and point data to prepare a map showing the distribution and density of rabbits in Australia. The potential for the method to be used for mapping other vertebrate pests is explored. The approach used to prepare the map is based on that used for rabbits in Queensland (Berman et al. 1998). An index of rabbit density was determined using the number of Spanish rabbit fleas released per square kilometre for each Soil Map Unit (Atlas of Australian Soils). Spanish rabbit fleas were released into active rabbit warrens at 1606 sites in the early 1990s as an additional vector for myxoma virus and the locations of the releases were recorded using a Global Positioning System (GPS). Releases were predominantly in arid areas but some fleas were released in south east Queensland and the New England Tablelands of New South Wales. The map produced appears to reflect well the distribution and density of rabbits, at least in the areas where Spanish fleas were released. Rabbit pellet counts conducted in 2007 at 54 sites across an area of south east South Australia, south eastern Queensland, and parts of New South Wales (New England Tablelands and south west) in soil Map Units where Spanish fleas were released, provided a preliminary means to ground truth the map. There was a good relationship between mean pellet count score and the index of abundance for soil Map Units. Rabbit pellet counts may allow extension of the map into other parts of Australia where there were no Spanish rabbit fleas released and where there may be no other consistent information on rabbit location and density. The recent Equine Influenza outbreak provided a further test of the value of this mapping method. The distribution and density of domestic horses were mapped to provide estimates of the number of horses in various regions. These estimates were close to the actual numbers of horses subsequently determined from vaccination records and registrations. The soil Map Units are not simply soil types they contain information on landuse and vegetation and the soil classification is relatively localised. These properties make this mapping method useful, not only for rabbits, but also for other species that are not so dependent on soil type for survival.
Resumo:
A real-time reverse transcription polymerase chain reaction (qRT-PCR) test for the matrix gene of type A influenza viruses was used during the 2007 Australian equine influenza (EI) outbreak in order to confirm diagnosis and, later, eradication of the virus. During the EI outbreak, horses being exported required vaccination and individual proof of freedom from EI. At the end of the outbreak, positive results were obtained from four horses destined for export, because of contamination of the samples with the vaccine. This report highlights the need for EI testing and vaccination to occur on separate days and with the collection of swabs for testing to precede vaccination.
Resumo:
The primary objective of this study was to investigate the impact of animal-level factors including energy balance and environmental/management stress, on the ovarian function of Bos indicus heifers treated to synchronize ovulation. Two-year-old Brahman (BN) (n = 30) and BN-cross (n = 34) heifers were randomly allocated to three intravaginal progesterone-releasing device (IPRD) treatment groups: (i) standard-dose IPRD [Cue-Mate (R) (CM) 1.56 g; n = 17]; (ii) half-dose IPRD [0.78 g progesterone (P4); CM 0.78 g; n = 15]; (iii) half-dose IPRD + 300 IU equine chorionic gonadotrophin at IPRD removal (CM 0.78 g + G; n = 14); (iv) and a control group, 2x PGF2a [500 mu g prostaglandin F2a (PGF2a)] on Day -16 and -2 (n = 18). Intravaginal progesterone-releasing device-treated heifers received 250 mu g PGF2a at IPRD insertion (Day -10) and IPRD removal (Day -2) and 1 mg oestradiol benzoate on Day -10 and -1. Heifers were managed in a small feedlot and fed a defined ration. Ovarian function was evaluated by ultrasonography and plasma P4 throughout the synchronized and return cycles. Energy balance was evaluated using plasma insulin-like growth factor 1 (IGF-I) and glucose concentrations. The impact of environmental stressors was evaluated using plasma cortisol concentration. Heifers that had normal ovarian function had significantly higher IGF-I concentrations at commencement of the experiment (p = 0.008) and significantly higher plasma glucose concentrations at Day -2 (p = 0.040) and Day 4 (p = 0.043), than heifers with abnormal ovarian function. There was no difference between the mean pre-ovulatory cortisol concentrations of heifers that ovulated or did not ovulate. However, heifers that ovulated had higher cortisol concentrations at Day 4 (p = 0.056) and 6 (p = 0.026) after ovulation than heifers that did not ovulate.