10 resultados para Environmental impacts

em eResearch Archive - Queensland Department of Agriculture


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A replicated trial to determine effective chemical control methods for the invasive species, basket asparagus (Asparagus aethiopicus L. cv. Sprengeri) was conducted at Currumbin Hill, Queensland, from June 1999 to August 2000. Four herbicides (metsulfuron-methyl, dicamba, glyphosate and diesel) were applied at different times of the year (winter, spring, summer and autumn). Neat diesel applied to adult crowns effectively killed basket asparagus. However, germination of basket asparagus and other weeds was not prevented. An overall spray of 0.06 g metsulfuron-methyl (0.1 g Brush-Off®) + 1 mL BS 1000® L-1 water gave slower but more selective long-term control of basket asparagus when compared to diesel, especially when applied in winter and spring. High rates of foliar applied dicamba were most effective in spring and glyphosate splatter gunned on base of stems in autumn. The combination of increased selectivity, ease of application and likelihood of reduced environmental impacts on native plants, other than coast she-oak (Casuarina equisetifolia L. var. incana Benth.), of metsulfuron-methyl makes it more suitable for controlling large infestations of basket asparagus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blue swimmer crabs (Portunus pelagicus) are an economically important crab caught in baited traps throughout the Indo-west Pacific and Mediterranean. In Australia they are traditionally caught using rigid wire traps (approximate to pots) but there has been a recent increase in the use of collapsible pots constructed from polyethylene trawl mesh. Two experiments were conducted in Moreton Bay, Queensland, to determine the ghost fishing potential of lost crab pots on both target and bycatch species and to evaluate the differences between traditional and contemporary pot designs. A lost contemporary, collapsible trawl mesh pot will catch between 3 and 223 R pelagicus per year after the bait has been exhausted, while a traditional wire mesh pot would catch 11-74 crabs peryear. As most fishers now use the collapsible trawl mesh pots, ghost fishing mortality could be as high as 111,811-670,866 crabs per year. Bycatch retention was also higher in contemporary designs. Periods of strong winds appeared to increase the ghost fishing potential of lost pots. The use of escape gaps, larger mesh sizes and construction options that allow for the deterioration of entrance funnels to minimise ghost fishing are recommended to reduce environmental impacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Feral pigs (Sus scrofa) are believed to have a severe negative impact on the ecological values of tropical rainforests in north Queensland, Australia. Most perceptions of the environmental impacts of feral pigs focus on their disturbance of the soil or surface material (diggings). Spatial and temporal patterns of feral pig diggings were identified in this study: most diggings occurred in the early dry season and predominantly in moist soil (swamp and creek) microhabitats, with only minimal pig diggings found elsewhere through the general forest floor. The overall mean daily pig diggings were 0.09% of the rainforest floor. Most diggings occurred 3-4 months after the month of maximum rainfall. Most pig diggings were recorded in highland swamps, with over 80% of the swamp areas dug by pigs at some time during the 18-month study period. These results suggest that management of feral pig impacts should focus on protecting swamp and creek microhabitats in the rainforest, which are preferred by pigs for digging and which have a high environmental significance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This publication, which is the final report to the Torres Strait Cooperative Research Centre, provides an overview of all the research that was conducted as part of the Torres Strait CRC Task 1.5 - Towards Ecologically Sustainable Management of the Torres Strait Prawn Fishery The objectives of the task were: To develop cost-effective protocols to monitor and quantify the bycatch and environmental impacts of commercial prawn trawling. To monitor the status of target species using both fishery dependent and fishery independent data. To develop biological reference points for target species and undertake management strategy evaluation, in particular a risk assessment of fishing at various levels of fishing mortality. This report focuses on the second component of objective 1 and details a comparative analysis of bycatch samples collected from areas of the Torres Strait that were both closed and open to prawn trawl fishing. The report also reviews the research conducted in relation to objectives 2 and 3 which are detailed in a separate report, Stock Assessment of the Torres Strait Tiger Prawn Fishery (Penaeus esculentus).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Burdekin Rangelands is a diverse area of semi-arid eucalypt and acacia savannah covering six million hectares in north eastern Australia. The major land use is cattle grazing on 220 commercial cattle properties (average size 26,000 ha) each carrying on average 2600 adult equivalents. Production was the focus of the beef industry and support agencies prior to the mid 1980's. Widespread land degradation during the 1980's led to a grassroots realisation that environmental impacts, including water quality had to be addressed for the beef industry to attain sustainability. The formation of a series of producer based landcare gropus and the support of several Queensland and Australian government research and extension agencies led to a greater awareness and adoption of sound grazing land management practices (Shepherd 2005).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The feasibility of state-wide eradication of 41 invasive plant taxa currently listed as ‘Class 1 declared pests’ under the Queensland Land Protection (Pest and Stock Route Management) Act 2002 was assessed using the predictive model ‘WeedSearch’. Results indicated that all but one species (Alternanthera philoxeroides) could be eradicated, provided sufficient funding and labour were available. Slightly less than one quarter (24.4%) (n = 10) of Class 1 weed taxa could be eradicated for less than $100 000 per taxon. An additional 43.9% (n = 18) could be eradicated for between $100 000 and $1M per taxon. Hence, 68.3% of Class 1 weed taxa (n = 28) could be eradicated for less than $1M per taxon. Eradication of 29.3% (n = 12) is predicted to cost more than $1M per taxon. Comparison of these WeedSearch outputs with either empirical analysis or results from a previous application of the model suggests that these costs may, in fact, be underestimates. Considering the likelihood that each weed will cost the state many millions of dollars in long-term losses (e.g. losses to primary production, environmental impacts and control costs), eradication seems a wise investment. Even where predicted costs are over $1M, eradication can still offer highly favourable benefit:cost ratios. The total (cumulative) cost of eradication of all 41 weed taxa is substantial; for all taxa, the estimated cost of eradication in the first year alone is $8 618 000. This study provides important information for policy makers, who must decide where to invest public funding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parthenium weed, an annual herb native to tropical America, causes severe economic, human, and animal health and environmental impacts in Australia and in many countries in Asia, Africa, and the Pacific. There is little known about variation in reproductive output in naturally occurring populations of this weed. This information is vital to develop plant population models, devise management strategies to reduce seed output, and formulate parthenium weed pollen-induced human health (e.g., dermatitis and hay fever) risk assessment. Here, the variations in the number of capitula produced by the parthenium weed at two sites in Queensland, Australia, over a 4-yr period are reported. Under field conditions, parthenium weed produced up to 39,192 capitula per plant (> 156,768 seeds per plant), with majority of the plants (approximate to 75%) producing between 11 and 1,000 capitula, and less than 0.3% of the plants producing more than 10,000 capitula (> 40,000 seeds per plant). The number of capitula per plant in the field (297 +/- 22) was much lower than those reported from glasshouse and laboratory studies. Plant biomass contributed to 50 to 80% of the variation in capitulum production between plants within plots at each site, and weed density accounted for 62 to 73% of the variation in capitulum production between plots within each site. As plant size is directly correlated with reproductive output, plant size distributions in parthenium weed can be used to estimate effective population size. Information on variation in reproductive output will be used to implement management strategies to reduce parthenium weed seed output, resulting in reduced soil seed bank and weed seed spread.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sodium fluoroacetate (1080) is a vertebrate poison commonly used for the control of vertebrate pests in Australia. Long-term environmental persistence of 1080 from baiting operations has likely nontarget species and environmental impacts and is a matter of public concern. Defluorinating micro-organisms have been detected in soils of Western and central Australia, and Queensland, but not in south-eastern Australia. The presence or absence of defluorinating micro-organisms in soils from south-eastern Australia will assist in determining whether long-term environmental persistence of 1080 is or is not occurring. Soils from the Central West Slopes and Plains and Central Tablelands of New South Wales were sampled to investigate the presence and capability of 1080 defluorinating soil micro-organisms. Thirty-one species of micro-organisms were isolated from soils from each site after 10 days incubation in a 20 mM 1080 solution. Of these, 13 isolates showed measurable defluorinating ability when grown in a 1080 and sterile soil suspension. Two species, the bacteria Micromonospora, and the actinomycete Streptosporangium, have not been previously reported for their defluorinating ability. These results indicate that defluorinating micro-organisms are present in soils in south-eastern Australia, which adds weight to other studies that found that 1080 is subject to microbiological degradative processes following removal from the bait substrate. Soil micro-organism defluorination, in combination with physical breakdown and uptake by plants, indicates that fluoroacetate in soils and natural water ways is unlikely to persist. This has implications for the better informed use of 1080 in pest animal management programmes in south-eastern Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Development of no-tillage (NT) farming has revolutionized agricultural systems by allowing growers to manage greater areas of land with reduced energy, labour and machinery inputs to control erosion, improve soil health and reduce greenhouse gas emission. However, NT farming systems have resulted in a build-up of herbicide-resistant weeds, an increased incidence of soil- and stubble-borne diseases and enrichment of nutrients and carbon near the soil surface. Consequently, there is an increased interest in the use of an occasional tillage (termed strategic tillage, ST) to address such emerging constraints in otherwise-NT farming systems. Decisions around ST uses will depend upon the specific issues present on the individual field or farm, and profitability and effectiveness of available options for management. This paper explores some of the issues with the implementation of ST in NT farming systems. The impact of contrasting soil properties, the timing of the tillage and the prevailing climate exert a strong influence on the success of ST. Decisions around timing of tillage are very complex and depend on the interactions between soil water content and the purpose for which the ST is intended. The soil needs to be at the right water content before executing any tillage, while the objective of the ST will influence the frequency and type of tillage implement used. The use of ST in long-term NT systems will depend on factors associated with system costs and profitability, soil health and environmental impacts. For many farmers maintaining farm profitability is a priority, so economic considerations are likely to be a primary factor dictating adoption. However, impacts on soil health and environment, especially the risk of erosion and the loss of soil carbon, will also influence a grower’s choice to adopt ST, as will the impact on soil moisture reserves in rainfed cropping systems.