2 resultados para Engel Groups

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Some of the most damaging invasive plants are dispersed by frugivores and this is an area of emerging importance in weed management. It highlights the need for practical information on how frugivores affect weed population dynamics and spread, how frugivore populations are affected by weeds and what management recommendations are available. 2. Fruit traits influence frugivore choice. Fruit size, the presence of an inedible peel, defensive chemistry, crop size and phenology may all be useful traits for consideration in screening and eradication programmes. By considering the effect of these traits on the probability, quality and quantity of seed dispersal, it may be possible to rank invasive species by their desirability to frugivores. Fruit traits can also be manipulated with biocontrol agents. 3. Functional groups of frugivores can be assembled according to broad species groupings, and further refined according to size, gape size, pre- and post-ingestion processing techniques and movement patterns, to predict dispersal and establishment patterns for plant introductions. 4. Landscape fragmentation can increase frugivore dispersal of invasives, as many invasive plants and dispersers readily use disturbed matrix environments and fragment edges. Dispersal to particular landscape features, such as perches and edges, can be manipulated to function as seed sinks if control measures are concentrated in these areas. 5. Where invasive plants comprise part of the diet of native frugivores, there may be a conservation conflict between control of the invasive and maintaining populations of the native frugivore, especially where other threats such as habitat destruction have reduced populations of native fruit species. 6. Synthesis and applications. Development of functional groups of frugivore-dispersed invasive plants and dispersers will enable us to develop predictions for novel dispersal interactions at both population and community scales. Increasingly sophisticated mechanistic seed dispersal models combined with spatially explicit simulations show much promise for providing weed managers with the information they need to develop strategies for surveying, eradicating and managing plant invasions. Possible conservation conflicts mean that understanding the nature of the invasive plant-frugivore interaction is essential for determining appropriate management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of sown pastures as short-term rotations into the cropping systems of northern Australia has been slow. The inherent chemical fertility and physical stability of the predominant vertisol soils across the region enabled farmers to grow crops for decades without nitrogen fertiliser, and precluded the evolution of a crop–pasture rotation culture. However, as less fertile and less physically stable soils were cropped for extended periods, farmers began to use contemporary farming and sown pasture technologies to rebuild and maintain their soils. This has typically involved sowing long-term grass and grass–legume pastures on the more marginal cropping soils of the region. In partnership with the catchment management authority, the Queensland Murray–Darling Committee (QMDC) and Landcare, a pasture extension process using the LeyGrain™ package was implemented in 2006 within two Grain & Graze projects in the Maranoa-Balonne and Border Rivers catchments in southern inland Queensland. The specific objectives were to increase the area sown to high quality pasture and to gain production and environmental benefits (particularly groundcover) through improving the skills of producers in pasture species selection, their understanding and management of risk during pasture establishment, and in managing pastures and the feed base better. The catalyst for increasing pasture sowings was a QMDC subsidy scheme for increasing groundcover on old cropping land. In recognising a need to enhance pasture knowledge and skills to implement this scheme, the QMDC and Landcare producer groups sought the involvement of, and set specific targets for, the LeyGrain workshop process. This is a highly interactive action learning process that built on the existing knowledge and skills of the producers. Thirty-four workshops were held with more than 200 producers in 26 existing groups and with private agronomists. An evaluation process assessed the impact of the workshops on the learning and skill development by participants, their commitment to practice change, and their future intent to sow pastures. The results across both project catchments were highly correlated. There was strong agreement by producers (>90%) that the workshops had improved knowledge and skills regarding the adaptation of pasture species to soils and climates, enabling a better selection at the paddock level. Additional strong impacts were in changing the attitudes of producers to all aspects of pasture establishment, and the relative species composition of mixtures. Producers made a strong commitment to practice change, particularly in managing pasture as a specialist crop at establishment to minimise risk, and in the better selection and management of improved pasture species (particularly legumes and the use of fertiliser). Producers have made a commitment to increase pasture sowings by 80% in the next 5 years, with fourteen producers in one group alone having committed to sow an additional 4893 ha of pasture in 2007–08 under the QMDC subsidy scheme. The success of the project was attributed to the partnership between QMDC and Landcare groups who set individual workshop targets with LeyGrain presenters, the interactive engagement processes within the workshops themselves, and the follow-up provided by the LeyGrain team for on-farm activities.