5 resultados para Energy intake

em eResearch Archive - Queensland Department of Agriculture


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The methods for estimating methane emissions from cattle as used in the Australian national inventory are based on older data that have now been superseded by a large amount of more recent data. Recent data suggested that the current inventory emissions estimates can be improved. To address this issue, a total of 1034 individual animal records of daily methane production (MP) was used to reassess the relationship between MP and each of dry matter intake (DMI) and gross energy intake (GEI). Data were restricted to trials conducted in the past 10 years using open-circuit respiration chambers, with cattle fed forage-based diets (forage >70%). Results from diets considered to inhibit methanogenesis were omitted from the dataset. Records were obtained from dairy cattle fed temperate forages (220 records), beef cattle fed temperate forages (680 records) and beef cattle fed tropical forages (133 records). Relationships were very similar for all three production categories and single relationships for MP on a DMI or GEI basis were proposed for national inventory purposes. These relationships were MP (g/day) = 20.7 (±0.28) × DMI (kg/day) (R2 = 0.92, P < 0.001) and MP (MJ/day) = 0.063 (±0.008) × GEI (MJ/day) (R2 = 0.93, P < 0.001). If the revised MP (g/day) approach is used to calculate Australia’s national inventory, it will reduce estimates of emissions of forage-fed cattle by 24%. Assuming a global warming potential of 25 for methane, this represents a 12.6 Mt CO2-e reduction in calculated annual emissions from Australian cattle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress HS; temperature-humidity index (THI) ~78 or kept in a THI < 70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI < 70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI < 70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI < 70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molasses-based liquid supplements fed ad libitum are widely used to provide additional metabolisable energy, non-protein N (NPN) and other nutrients to grazing cattle, but it is often difficult to achieve target intakes of supplementary nutrients. Experiments examined the effects of increasing concentrations of phosphoric acid, urea and ammonium sulfate on the voluntary intake (VI) of molasses-based supplements offered ad libitum to heifers grazing tropical pastures. In Experiment 1, the VI of a supplement containing 78 g urea/kg and 26 g phosphoric acid/kg as-fed (M80U+PA) was 3.61 g DM/kg liveweight (LW) per day, and provided 181 mg NPN and 32.4 mg phosphorus (P)/kg LW per day. Increasing the urea content of the supplement to 137 g/kg (M140U+PA) or 195 g/kg (M200U+PA) reduced VI of supplement DM, NPN and P by up to 76%, 44% and 80%, respectively. VI of supplement containing ammonium sulfate (M140+AS+PA) was lower (P < 0.05) than that of M140U+PA supplement, and tended (P > 0.05) to be lower than that of M200U+PA supplement. In experiment 2, the VI by heifers of a supplement containing 200 g urea/kg (M200U) was 1.53 g supplement DM/kg LW per day, which provided 186 mg NPN/kg LW per day. Inclusion of 49 g phosphoric acid/kg as-fed in this supplement (M190U+50PA) reduced (P < 0.05) VI of supplement DM and NPN by 33% and 36%, respectively, while inclusion of 97 g phosphoric acid/kg (M180U+100PA) reduced (P < 0.05) VI of supplement DM and NPN by 43% and 48%, respectively. The M190U+50PA and M180U+100PA supplements provided 16 and 26 mg P/kg LW per day, respectively. Heifers not fed supplements gained 0.07 kg/day, and the M200U supplement increased (P < 0.05) LW gain to 0.18 kg/day. LW gain was further increased (P < 0.05) by the M190U+50PA to 0.28 kg/day, indicating a growth response to supplementary P. No adverse effects of the supplements on animal health were observed in any of the experiments. In conclusion, addition of urea and/or phosphoric acid to molasses supplements effectively reduced VI of supplementary DM, NPN and P, and in the circumstances of Experiment 2, both molasses-urea and P supplements increased heifer LW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Response curves were established for different supplements, offered at intakes ranging from 0 to 20 g/kg liveweight (W).day to young Bos indicus crossbred steers fed low-quality Rhodes grass (Chloris gayana) hay ad libitum in two pen experiments. Supplements included protein meals of varying rumen-degradability (cottonseed meal (CSM) or fishmeal), as well as ‘energy sources’ comprising grains of high and low ruminal starch degradability (barley and sorghum) and a highly fermentable sugar source (molasses), with all diets adjusted for rumen-degradable nitrogen and mineral content. Unsupplemented steers gained 0.08 and 0.15 kg/day, in Experiments 1 and 2, respectively. Growth of steers increased linearly with intake of ‘energy source’ supplements in increasing order of molasses, sorghum and barley (all differences P < 0.05). Steer growth rate also increased linearly with fishmeal, albeit over a narrow intake range (0–4.1 g/kg W.day), whereas the response with CSM was asymptotic, showing a steep response at low intake before levelling at ~1.2 kg/day. All supplement types were associated with a linear reduction in hay intake by the steers (energy substitution) where the reduction was greater (P < 0.05) for barley and molasses (not different) than for sorghum (P < 0.05), and for fishmeal compared with CSM (P < 0.05). In concurrent metabolism studies with the same rations, organic matter digestibility of the total ration (561–578 g/kg DM, unsupplemented) was increased linearly by barley and molasses (both P < 0.05) but was unaffected by CSM and sorghum supplements. The efficiency of microbial protein synthesis in steers increased linearly, from 91 g microbial crude protein/kg digestible organic matter (unsupplemented), in both molasses and CSM-supplemented steers, with the trend for a higher response to molasses (P = 0.05), and appeared most closely related to digestible organic matter intake. The response curves from these studies provide the practical framework upon which to formulate rations for cattle grazing low-quality forages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dose response curves to various supplements were established in two pen-feeding experiments (Exp1 and Exp2) with Bos indicus crossbred steers of two age groups (Young, 10–12 months; Old, 33–36 months) fed low-quality tropical grass hays ad libitum. Diets included supplements based on (Exp1) cottonseed meal (CSM; intake (as fed) 0–10 g/kg liveweight (W).day) and a barley mix (Bar; 0–20 g/kg W.day) and (Exp2) a molasses mix (MUP) and a Bar mix, both fed at 0–20 g/kg W.day. Urea was provided with the Bar mixes and urea/copra meal with the MUP mix. Growth rates of Young steers increased linearly with Bar and MUP supplements but asymptotically with CSM whereas those of Old steers increased asymptotically with all supplement types. With supplement intake expressed on a liveweight basis (g/kg W.day), responses were greater for both steer age groups with CSM compared with Bar (Young, P < 0.001; Old, P < 0.01) and Bar compared with MUP treatments (Young, P < 0.01; Old, P < 0.05). Furthermore, Old steers outperformed their Young counterparts with both CSM (P < 0.05) and Bar (P < 0.001) supplements fed in Exp1 and with Bar and MUP supplements (P < 0.01) fed in Exp2. When supplement intake was expressed in absolute terms (kg/day), growth responses were not different between age groups for different supplements except that Old steers had a higher daily W gain on Bar than their Young counterparts (P < 0.05). Intake of hay (W-corrected) was higher for Young compared with Old steers without supplement but was variably reduced for both steer groups with increasing supplement intake. The results of these experiments have implications for supplement formulation for steers at different stages of maturity grazing low-quality forages.