4 resultados para Elevated plus-maze
em eResearch Archive - Queensland Department of Agriculture
Resumo:
This study uses chlorophyll a fluorescence to examine the effect of environmentally relevant (1-4 h) exposures of thermal stress (35-45 [deg]C) on seagrass photosynthetic yield in seven tropical species of seagrasses. Acute response of each tropical seagrass species to thermal stress was characterised, and the capacity of each species to tolerate and recover from thermal stress was assessed. Two fundamental characteristics of heat stress were observed. The first effect was a decrease in photosynthetic yield (Fv / Fm) characterised by reductions in F and Fm'. The dramatic decline in Fv / Fm ratio, due to chronic inhibition of photosynthesis, indicates an intolerance of Halophila ovalis, Zostera capricorni and Syringodium isoetifolium to ecologically relevant exposures of thermal stress and structural alterations to the PhotoSystem II (PSII) reaction centres. The decline in Fm' represents heat-induced photoinhibition related to closure of PSII reaction centres and chloroplast dysfunction. The key finding was that Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were more tolerant to thermal stress than H. ovalis, Z. capricorni and S. isoetifolium. After 3 days of 4 h temperature treatments ranging from 25 to 40 [deg]C, C. rotundata, C. serrulata and H. uninervis demonstrated a wide tolerance to temperature with no detrimental effect on Fv / Fm' qN or qP responses. These three species are restricted to subtropical and tropical waters and their tolerance to seawater temperatures up to 40 [deg]C is likely to be an adaptive response to high temperatures commonly occurring at low tides and peak solar irradiance. The results of temperature experiments suggest that the photosynthetic condition of all seagrass species tested are likely to suffer irreparable effects from short-term or episodic changes in seawater temperatures as high as 40-45 [deg]C. Acute stress responses of seagrasses to elevated seawater temperatures are consistent with observed reductions in above-ground biomass during a recent El Nino event.
Resumo:
We tested the effect of near-future CO2 levels (a parts per thousand 490, 570, 700, and 960 mu atm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 mu atm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 mu atm CO2 (control). In contrast, juveniles reared at 700 and 960 mu atm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 mu atm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO(2) remains below 600 mu atm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator-prey interactions and commercial fisheries.
Resumo:
In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol−1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol−1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust-infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.
Resumo:
Tension banding castration of cattle is gaining favour because it is relatively simple to perform and is promoted by retailers of the banders as a humane castration method. Two experiments were conducted, under tropical conditions using Bos indicus bulls comparing tension banding (Band) and surgical (Surgical) castration of weaner (7–10 months old) and mature (22–25 months old) bulls with and without pain management (NSAID (ketoprofen) or saline injected intramuscularly immediately prior to castration). Welfare outcomes were assessed using a range of measures; this paper reports on some physiological, morbidity and productivity-related responses to augment the behavioural responses reported in an accompanying paper. Blood samples were taken on the day of castration (day 0) at the time of restraint (0 min) and 30 min (weaners) or 40 min (mature bulls), 2 h, and 7 h; and days 1, 2, 3, 7, 14, 21 and 28 post-castration. Plasmas from day 0 were assayed for cortisol, creatine kinase, total protein and packed cell volume. Plasmas from the other samples were assayed for cortisol and haptoglobin (plus the 0 min sample). Liveweights were recorded approximately weekly to 6 weeks and at 2 and 3 months post-castration. Castration sites were checked at these same times to 2 months post-castration to score the extent of healing and presence of sepsis. Cortisol concentrations (mean ± s.e. nmol/L) were significantly (P < 0.05) higher in the Band (67 ± 4.5) compared with Surgical weaners (42 ± 4.5) at 2 h post-castration, but at 24 h post-castration were greater in the Surgical (43 ± 3.2) compared with the Band weaners (30 ± 3.2). The main effect of ketoprofen was on the cortisol concentrations of the mature Surgical bulls; concentrations were significantly reduced at 40 min (47 ± 7.2 vs. 71 ± 7.2 nmol/L for saline) and 2 h post-castration (24 ± 7.2, vs. 87 ± 7.2 nmol/L for saline). Ketoprofen, however, had no effect on the Band mature bulls, with their cortisol concentrations averaging 54 ± 5.1 nmol/L at 40 min and 92 ± 5.1 nmol/L at 2 h. Cortisol concentrations were also significantly elevated in the Band (83 ± 3.0 nmol/L) compared with Surgical mature bulls (57 ± 3.0 nmol/L) at weeks 2–4 post-castration. The timing of this elevation coincided with significantly elevated haptoglobin concentrations (mg/mL) in the Band bulls (2.97 ± 0.102 for mature bulls and 1.71 ± 0.025 for weaners, vs. 2.10 ± 0.102 and 1.45 ± 0.025 respectively for the Surgical treatment) and evidence of slow wound healing and sepsis in both the weaner (0.81 ± 0.089 not healed at week 4 for Band, 0.13 ± 0.078 for Surgical) and mature bulls (0.81 ± 0.090 at week 4 for Band, 0.38 ± 0.104 for Surgical). Overall, liveweight gains of both age groups were not affected by castration method. The findings of acute pain, chronic inflammation and possibly chronic pain in the mature bulls at least, together with poor wound healing in the Band bulls support behavioural findings reported in the accompanying paper and demonstrate that tension banding produces inferior welfare outcomes for weaner and mature bulls compared with surgical castration.