5 resultados para Edelin, Kenneth , 1939-2013

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This publication lists the more important wood properties of commercial timbers used for construction in Queensland. It also provides requirements and conditions of use for these timbers to provide appropriate design service life in various construction applications. The correct specification of timber considers a range of timber properties including, but not limited to, stress grade; durability class; moisture content and insect resistance. For the specification of timber sizes and spans, relevant Australian Standards and design manuals should be consulted—e.g. Australian Standard AS 1684 series Residential timber—framed construction parts 2 and 3 (Standards Australia 2006a;b.) Book 1 explains the terms used; with reference to nomenclature; origin and timber properties presented under specific column headings in the schedules (Book 2). It also explains target design life; applications and decay hazard zones; presented in the Book 2 Schedules. Book 2 consists of reference tables; presented as schedules A; B and C: • Schedule A contains commercial mixtures of unidentified timbers and of some Australian and imported softwoods. Index numbers 1–10 • Schedule B contains Australian-grown timber species; including both natural forests and plantations. Index numbers 11–493 • Schedule C contains timbers imported into Australia from overseas. Index numbers 494–606 Each schedule has two parts presenting data in tables. • Part 1: Nomenclature, origin and properties of imported timber species • Part 2: Approved uses for commercial mixtures of imported timber species The recommendations made in this publication assume that good building practice will be carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The project examined coastal and physical oceanographic influences on the catch rates of coral trout (Plectropomus leopardus) and saucer scallops (Amusium balloti) in Queensland. The research was undertaken to explain variation observed in the catches, and to improve quantitative assessment of the stocks and management advice. 3.1 OBJECTIVES 1. Review recent advances in the study of physical oceanographic influences on fisheries catch data, and describe the major physical oceanographic features that are likely to influence Queensland reef fish and saucer scallops. 2. Collate Queensland’s physical oceanographic data and fisheries (i.e. reef fish and saucer scallops) data. 3. Develop stochastic population models for reef fish and saucer scallops, which can link physical oceanographic features (e.g. sea surface temperature anomalies) to catch rates, biological parameters (e.g. growth, reproduction, natural mortality) and ecological aspects (e.g. spatial distribution).