5 resultados para Economical
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In 2001 a scoping study (phase I) was commissioned to determine and prioritise the weed issues of cropping systems with dryland cotton. The main findings were that the weed flora was diverse, cropping systems complex, and weeds had a major financial and economical impact. Phase II 'Best weed management strategies for dryland cropping systems with cotton' focused on improved management of the key weeds, bladder ketmia, sowthistle, fleabane, barnyard grass and liverseed grass.In Phase III 'Improving management of summer weeds in dryland cropping systems with cotton', more information on the seed-bank dynamics of key weeds was gained in six pot and field studies. The studies found that these characteristics differed between species, and even climate in the case of bladder ketmia. Species such as sowthistle, fleabane and barnyard grass emerged predominately from the surface soil. Sweet summer grass was also in this category but also had a significant proportion emerging from 5 cm depth. Bladder ketmia in central Queensland emerged mainly from the top 2 cm, whereas in southern Queensland it emerged mainly from 5 cm. Liverseed grass had its highest emergence from 5 cm below the surface. In all cases the persistence of seed increased with increasing soil depth. Fleabane was also found to be sensitive to soil type with no seedlings emerging in the self-mulching black vertisol soil. A strategic tillage trial showed that burial of fleabane seed, using a disc or chisel plough, to a depth of greater than 2 cm can significantly reduce subsequent fleabane emergence. In contrast, tillage increased barnyard grass emergence and tended to decrease persistence. This research showed that weed management plans can not be blanketed across all weed species, rather they need to be targeted for each main weed species.This project has also resulted in an increased knowledge of how to manage fleabane from the eight experiments; one in wheat, two in sorghum, one in cotton and three in fallow on double knock. For summer crops, the best option is to apply a highly effective fallow treatment prior to sowing the crops. For winter crops, the strategy is the integration of competitive crops, residual herbicide followed by a knockdown to control survivors. This project explored further the usefulness of the double knock tactic for weed control and preventing seed set. Two field and one pot experiments have shown that this tactic was highly effective for fleabane control. Paraquat products provided good control when followed by glyphosate. When 2, 4-D was added in a tank mix with glyphosate and followed by paraquat products, 99-100% control was achieved in all cases. The ideal follow-up times for paraquat products after glyphosate were 5-7 days. The preferred follow-up times for 2, 4-D after glyphosate were on the same day and one day later. The pot trial, which compared a population from a cropping field with previous glyphosate exposure and a population from a non-cropping area with no previous glyphosate herbicide exposure, showed that the pervious herbicide exposure affected the response of fleabane to herbicidal control measures. The web-based brochure on managing fleabane has been updated.Knowledge on management of summer grasses and safe use of residual herbicides was derived from eight field and pot experiments. Residual grass and broadleaf weed control was excellent with atrazine pre-plant and at-planting treatments, provided rain was received within a short interval after application. Highly effective fallow treatments (cultivation and double knock), not only gave excellent grass control in the fallow, also gave very good control in the following cotton. In the five re-cropping experiments, there were no adverse impacts on cotton from atrazine, metolachlor, metsulfuron and chlorsulfuron residues following use in previous sorghum, wheat and fallows. However, imazapic residues did reduce cotton growth.The development of strategies to reduce the heavy reliance on glyphosate in our cropping systems, and therefore minimise the risk of glyphosate resistance development, was a key factor in the research undertaken. This work included identifying suitable tactics for summer grass control, such as double knock with glyphosate followed by paraquat and tillage. Research on fleabane also concentrated on minimising emergence through tillage, and applying the double knock tactic. Our studies have shown that these strategies can be used to prevent seed set with the goal of driving down the seed bank. Utilisation of the strategies will also reduce the reliance on glyphosate, and therefore reduce the risk of glyphosate resistance developing in our cropping systems.Information from this research, including ecological and management data were collected from an additional eight paddock monitoring sites, was also incorporated into the Weeds CRC seed bank model "Weed Seed Wizard", which will be able to predict the impact of different management options on weed populations in cotton and grain farming systems. Extensive communication activities were undertaken throughout this project to ensure adoption of the new strategies for improved weed management and reduced risk for glyphosate resistance.
Resumo:
The objectives of this project were to: 1. Understand why moisture gradients occur in Australian hardwoods during drying and their affects on the performance of timber in service; 2. Improve existing technology(ies) and/or processes to reduce moisture content (MC) variability between and within boards during drying of Australian hardwoods in an economical and practical manner.
Resumo:
Rice production symbolizes the single largest land use for food production on the Earth. The significance of this cereal as a source of energy and income seems overwhelming for millions of people in Asia, representing 90% of global rice production and consumption. Estimates indicate that the burgeoning population will need 25% more rice by 2025 than today's consumption. As the demand for rice is increasing, its production in Asia is threatened by a dwindling natural resource base, socioeconomic limitations, and uncertainty of climatic optima. Transplanting in puddled soil with continuous flooding is a common method of rice crop establishment in Asia. There is a dire need to look for rice production technologies that not only cope with existing limitations of transplanted rice but also are viable, economical, and secure for future food demand.Direct seeding of rice has evolved as a potential alternative to the current detrimental practice of puddling and nursery transplanting. The associated benefits include higher water productivity, less labor and energy inputs, less methane emissions, elimination of time and edaphic conflicts in the rice-wheat cropping system, and early crop maturity. Realization of the yield potential and sustainability of this resource-conserving rice production technique lies primarily in sustainable weed management, since weeds have been recognized as the single largest biological constraint in direct-seeded rice (DSR). Weed competition can reduce DSR yield by 30-80% and even complete crop failure can occur under specific conditions. Understanding the dynamics and outcomes of weed-crop competition in DSR requires sound knowledge of weed ecology, besides production factors that influence both rice and weeds, as well as their association. Successful adoption of direct seeding at the farmers' level in Asia will largely depend on whether farmers can control weeds and prevent shifts in weed populations from intractable weeds to more difficult-to-control weeds as a consequence of direct seeding. Sustainable weed management in DSR comprises all the factors that give DSR a competitive edge over weeds regarding acquisition and use of growth resources. This warrants the need to integrate various cultural practices with weed control measures in order to broaden the spectrum of activity against weed flora. A weed control program focusing entirely on herbicides is no longer ecologically sound, economically feasible, and effective against diverse weed flora and may result in the evolution of herbicide-resistant weed biotypes. Rotation of herbicides with contrasting modes of action in conjunction with cultural measures such as the use of weed-competitive rice cultivars, sowing time, stale seedbed technique, seeding rate, crop row spacing, fertilizer and water inputs and their application method/timing, and manual and mechanical hoeing can prove more effective and need to be optimized keeping in view the type and intensity of weed infestation. This chapter tries to unravel the dynamics of weed-crop competition in DSR. Technological issues, limitations associated with DSR, and opportunities to combat the weed menace are also discussed as a pragmatic approach for sustainable DSR production. A realistic approach to secure yield targets against weed competition will combine the abovementioned strategies and tactics in a coordinated manner. This chapter further suggests the need of multifaceted and interdisciplinary research into ecologically based weed management, as DSR seems inevitable in the near future.
Resumo:
Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).
Resumo:
The reliable assessment of macrophyte biomass is fundamental for ecological research and management of freshwater ecosystems. While dry mass is routinely used to determine aquatic plant biomass, wet (fresh) mass can be more practical. We tested the accuracy and precision of wet mass measurements by using a salad spinner to remove surface water from four macrophyte species differing in growth form and architectural complexity. The salad spinner aided in making precise and accurate wet mass with less than 3% error. There was also little difference between operators, with a user bias estimated to be below 5%. To achieve this level of precision, only 10–20 turns of the salad spinner are needed. Therefore, wet mass of a sample can be determined in less than 1 min. We demonstrated that a salad spinner is a rapid and economical technique to enable precise and accurate macrophyte wet mass measurements and is particularly suitable for experimental work. The method will also be useful for fieldwork in situations when sample sizes are not overly large.