15 resultados para ERRORS
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The fatty acid composition of ground nuts (Arachis hypogaea L.) commonly known as peanuts, is an important consideration when a new variety is being released. The composition impacts on nutrition and, importantly, self-life of peanut products. To select for suitable breeding material, it was necessary to develop a rapid, non-derstructive and cost-efficient method. Near infrared spectroscopy was chosen as that methodology. Calibrations were developed for two major fatty-acid components, oleic and linoleic acids and two minor components, palmitic and stearic acids, as well as total oil content. Partial least squares models indicated a high level of precision with a squared multiple correlation coefficient of greater than 0.90 for each constitutent. Standard errors for prediction for oleic, linoleic, palmitic, stearic acids and total oil content were 6.4%, 4.5%, 0.8%, 0.9% and 1.3% respectively. The results demonstrated that reasonable calibrations could be developed to predict oil composition and content of peanuts for a breeding programme.
Resumo:
Weighing lysimeters are the standard method for directly measuring evapotranspiration (ET). This paper discusses the construction, installation, and performance of two (1.52 m × 1.52 m × 2.13-m deep) repacked weighing lysimeters for measuring ET of corn and soybean in West Central Nebraska. The cost of constructing and installing each lysimeter was approximately US $12,500, which could vary depending on the availability and cost of equipment and labor. The resolution of the lysimeters was 0.0001 mV V-1, which was limited by the data processing and storage resolution of the datalogger. This resolution was equivalent to 0.064 and 0.078 mm of ET for the north and south lysimeters, respectively. Since the percent measurement error decreases with the magnitude of the ET measured, this resolution is adequate for measuring ET for daily and longer periods, but not for shorter time steps. This resolution would result in measurement errors of less than 5% for measuring ET values of ≥3 mm, but the percent error rapidly increases for lower ET values. The resolution of the lysimeters could potentially be improved by choosing a datalogger that could process and store data with a higher resolution than the one used in this study.
Resumo:
Near infrared spectroscopy (NIRS) combined with multivariate analysis techniques was applied to assess phenol content of European oak. NIRS data were firstly collected directly from solid heartwood surfaces: in doing so, the spectra were recorded separately from the longitudinal radial and the transverse section surfaces by diffuse reflectance. The spectral data were then pretreated by several pre-processing procedures, such as multiplicative scatter correction, first derivative, second derivative and standard normal variate. The tannin contents of sawmill collected from the longitudinal radial and transverse section surfaces were determined by quantitative extraction with water/methanol (1:4, by vol). Then, total phenol contents in tannin extracts were measured by the Folin-Ciocalteu method. The NIR data were correlated against the Folin-Ciocalteu results. Calibration models built with partial least squares regression displayed strong correlation - as expressed by high determination correlation coefficient (r2) and high ratio of performance to deviation (RPD) - between measured and predicted total phenols content, and weak calibration and prediction errors (RMSEC, RMSEP). The best calibration was provided with second derivative spectra (r2 value of 0.93 for the longitudinal radial plane and of 0.91 for the transverse section plane). This study illustrates that the NIRS technique when used in conjunction with multivariate analysis could provide reliable, quick and non-destructive assessment of European oak heartwood extractives.
Resumo:
Cereal grain is one of the main export commodities of Australian agriculture. Over the past decade, crop yield forecasts for wheat and sorghum have shown appreciable utility for industry planning at shire, state, and national scales. There is now an increasing drive from industry for more accurate and cost-effective crop production forecasts. In order to generate production estimates, accurate crop area estimates are needed by the end of the cropping season. Multivariate methods for analysing remotely sensed Enhanced Vegetation Index (EVI) from 16-day Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery within the cropping period (i.e. April-November) were investigated to estimate crop area for wheat, barley, chickpea, and total winter cropped area for a case study region in NE Australia. Each pixel classification method was trained on ground truth data collected from the study region. Three approaches to pixel classification were examined: (i) cluster analysis of trajectories of EVI values from consecutive multi-date imagery during the crop growth period; (ii) harmonic analysis of the time series (HANTS) of the EVI values; and (iii) principal component analysis (PCA) of the time series of EVI values. Images classified using these three approaches were compared with each other, and with a classification based on the single MODIS image taken at peak EVI. Imagery for the 2003 and 2004 seasons was used to assess the ability of the methods to determine wheat, barley, chickpea, and total cropped area estimates. The accuracy at pixel scale was determined by the percent correct classification metric by contrasting all pixel scale samples with independent pixel observations. At a shire level, aggregated total crop area estimates were compared with surveyed estimates. All multi-temporal methods showed significant overall capability to estimate total winter crop area. There was high accuracy at pixel scale (>98% correct classification) for identifying overall winter cropping. However, discrimination among crops was less accurate. Although the use of single-date EVI data produced high accuracy for estimates of wheat area at shire scale, the result contradicted the poor pixel-scale accuracy associated with this approach, due to fortuitous compensating errors. Further studies are needed to extrapolate the multi-temporal approaches to other geographical areas and to improve the lead time for deriving cropped-area estimates before harvest.
Resumo:
Near infrared (NIR) spectroscopy, usually in reflectance mode, has been applied to the analysis of faeces to measure the concentrations of constituents such as total N, fibre, tannins and delta C-13. In addition, an unusual and exciting application of faecal NIR [F.NIR] analyses is to directly predict attributes of the diet of herbivores such as crude protein and fibre contents, proportions of plant species and morphological components, diet digestibility and voluntary DM intake. This is an unusual application of NIR spectroscopy insofar as the spectral measurements are made, not on the material of interest [i.e. the diet), but on a derived material (i.e. faeces). Predictions of diet attributes from faecal spectra clearly depend on there being sufficient NIR spectral information in the diet residues present in faeces to describe the diet, although endogenous components of faeces such as undigested debris of micro-organisms from the rumen and Large intestine and secretions into the gastrointestinal tract wilt also contribute spectral information. Spectra of forage and of faeces derived from the forage are generally similar and the observed differences are principally in the spectral regions associated with constituents of forages known to be of low, or of high, digestibility. Some diet components (for example, ureal which are likely to be entirely digested apparently cannot be predicted from faecal NIR spectra because they cannot contribute to faecal spectra except through modifying the microbial and endogenous components. The errors and robustness of F.NIR calibrations to predict the crude protein concentration and digestibility of the diet of herbivores are generally comparable with those to directly predict the same attributes in forage from NIR spectra of the forage. Some attributes of the animal, such as species, gender, pregnancy status and parasite burden have been successfully discriminated into classes based on their faecal NIR spectra. Such discrimination was likely associated with differences in the diet selected and/or differences in the metabolites excreted in the faeces. NIR spectroscopy of faeces has usually involved scanning dried and ground samples in monochromators in the 400-2500nm or 1100-2500nm ranges. Results satisfactory for the purpose have also been reported for dried and ground faeces scanned using a diode array instrument in the 800-1700nm range and for wet faeces and slurries of excreta scanned with monochromators. Chemometric analysis of faecal spectra has generally used the approaches established for forage analysis. The capacity to predict many attributes of the diet, and some aspects of animal physiology, from NIR spectra of faeces is particularly useful to study the quality and quantity of the diet selected by both domestic and feral grazing herbivores and to enhance production and management of both herbivores and their grazing environment.
Resumo:
In a study that included C-4 tropical grasses, C-3 temperate grasses and C-3 pasture legumes, in vitro dry matter digestibility of extrusa, measured as in vitro dry matter loss (IVDML) during incubation, compared with that of the forage consumed, was greater for grass extrusa but not for legume extrusa. The increase in digestibility was not caused by mastication or by the freezing of extrusa samples during storage but by the action of saliva. Comparable increases in IVDML were achieved merely by mixing bovine saliva with ground forage samples. Differences were greater than could be explained by increases due to completely digestible salivary DM. There was no significant difference between animals in relation to the saliva effect on IVDML and, except for some minor differences, similar saliva effects on IVDML were measured using either the pepsin-cellulase or rumen fluid-pepsin in vitro techniques. For both C-4 and C-3 grasses the magnitude of the differences were inversely related to IVDML of the feed and there was little or no difference between extrusa and feed at high digestibilities (>70%) whereas differences of more than 10 percentage units were measured on low quality grass forages. The data did not suggest that the extrusa or saliva effect on digestibility was different for C-3 grasses than for C-4 grasses but data on C-3 grasses were limited to few species and to high digestibility samples. For legume forages there was no saliva effect when the pepsin-cellulase method was used but there was a small but significant positive effect using the rumen fluid-pepsin method. It was concluded that when samples of extrusa are analysed using in vitro techniques, predicted in vivo digestibility of the feed consumed will often be overestimated, especially for low quality grass diets. The implications of overestimating in vivo digestibility and suggestions for overcoming such errors are discussed.
Resumo:
Raw data from SeaScan™ transects off Wide Bay (south Queensland) taken in August 2007 as part of a study of ecological factors influencing the distribution of spanner crabs (Ranina ranina). The dataset (comma-delimited ascii file) comprises the following fields: 1. record number 2. date-time (GMT) 3. date-time (AEST) 4. latitude (signed decimal degrees) 5. longitude (decimal degrees) 6. speed over ground (knots) 7. depth (m) 8. seabed roughness (v) 9. hardness (v) Indices of roughness and hardness (from the first and second echoes respectively) were obtained using a SeaScan™ 100 system (un-referenced) on board the Research Vessel Tom Marshall, with the ship’s Furuno FCV 1100 echo sounder and 1 kW, 50 kHz transducer. Generally vessel speed was kept below about 14 kt (typically ~12 kt), and the echo-sounder range set to 80 m. The data were filtered to remove errors due to data drop-out, straying beyond system depth limits (min. 10 m), or transducer interference.
Resumo:
Background: Understanding the long-distance movement of bats has direct relevance to studies of population dynamics, ecology, disease emergence, and conservation. Methodology/Principal Findings: We developed and trialed several collar and platform terminal transmitter (PTT) combinations on both free-living and captive fruit bats (Family Pteropodidae: Genus Pteropus). We examined transmitter weight, size, profile and comfort as key determinants of maximized transmitter activity. We then tested the importance of bat-related variables (species size/weight, roosting habitat and behavior) and environmental variables (day-length, rainfall pattern) in determining optimal collar/PTT configuration. We compared battery- and solar-powered PTT performance in various field situations, and found the latter more successful in maintaining voltage on species that roosted higher in the tree canopy, and at lower density, than those that roost more densely and lower in trees. Finally, we trialed transmitter accuracy, and found that actual distance errors and Argos location class error estimates were in broad agreement. Conclusions/Significance: We conclude that no single collar or transmitter design is optimal for all bat species, and that species size/weight, species ecology and study objectives are key design considerations. Our study provides a strategy for collar and platform choice that will be applicable to a larger number of bat species as transmitter size and weight continue to decrease in the future.
Resumo:
Standardised time series of fishery catch rates require collations of fishing power data on vessel characteristics. Linear mixed models were used to quantify fishing power trends and study the effect of missing data encountered when relying on commercial logbooks. For this, Australian eastern king prawn (Melicertus plebejus) harvests were analysed with historical (from vessel surveys) and current (from commercial logbooks) vessel data. Between 1989 and 2010, fishing power increased up to 76%. To date, both forward-filling and, alternatively, omitting records with missing vessel information from commercial logbooks produce broadly similar fishing power increases and standardised catch rates, due to the strong influence of years with complete vessel data (16 out of 23 years of data). However, if gaps in vessel information had not originated randomly and skippers from the most efficient vessels were the most diligent at filling in logbooks, considerable errors would be introduced. Also, the buffering effect of complete years would be short lived as years with missing data accumulate. Given ongoing changes in fleet profile with high-catching vessels fishing proportionately more of the fleet’s effort, compliance with logbook completion, or alternatively ongoing vessel gear surveys, is required for generating accurate estimates of fishing power and standardised catch rates.
Resumo:
The wheat grain industry is Australia's second largest agricultural export commodity. There is an increasing demand for accurate, objective and near real-time crop production information by industry. The advent of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite platform has augmented the capability of satellite-based applications to capture reflectance over large areas at acceptable pixel scale, cost and accuracy. The use of multi-temporal MODIS-enhanced vegetation index (EVI) imagery to determine crop area was investigated in this article. Here the rigour of the harmonic analysis of time-series (HANTS) and early-season metric approaches was assessed when extrapolating over the entire Queensland (QLD) cropping region for the 2005 and 2006 seasons. Early-season crop area estimates, at least 4 months before harvest, produced high accuracy at pixel and regional scales with percent errors of -8.6% and -26% for the 2005 and 2006 seasons, respectively. In discriminating among crops at pixel and regional scale, the HANTS approach showed high accuracy. The errors for specific area estimates for wheat, barley and chickpea were 9.9%, -5.2% and 10.9% (for 2005) and -2.8%, -78% and 64% (for 2006), respectively. Area estimates of total winter crop, wheat, barley and chickpea resulted in coefficient of determination (R(2)) values of 0.92, 0.89, 0.82 and 0.52, when contrasted against the actual shire-scale data. A significantly high coefficient of determination (0.87) was achieved for total winter crop area estimates in August across all shires for the 2006 season. Furthermore, the HANTS approach showed high accuracy in discriminating cropping area from non-cropping area and highlighted the need for accurate and up-to-date land use maps. The extrapolability of these approaches to determine total and specific winter crop area estimates, well before flowering, showed good utility across larger areas and seasons. Hence, it is envisaged that this technology might be transferable to different regions across Australia.
Resumo:
The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.
Resumo:
Background Next-generation sequencing technology is an important tool for the rapid, genome-wide identification of genetic variations. However, it is difficult to resolve the ‘signal’ of variations of interest and the ‘noise’ of stochastic sequencing and bioinformatic errors in the large datasets that are generated. We report a simple approach to identify regional linkage to a trait that requires only two pools of DNA to be sequenced from progeny of a defined genetic cross (i.e. bulk segregant analysis) at low coverage (<10×) and without parentage assignment of individual SNPs. The analysis relies on regional averaging of pooled SNP frequencies to rapidly scan polymorphisms across the genome for differential regional homozygosity, which is then displayed graphically. Results Progeny from defined genetic crosses of Tribolium castaneum (F4 and F19) segregating for the phosphine resistance trait were exposed to phosphine to select for the resistance trait while the remainders were left unexposed. Next generation sequencing was then carried out on the genomic DNA from each pool of selected and unselected insects from each generation. The reads were mapped against the annotated T. castaneum genome from NCBI (v3.0) and analysed for SNP variations. Since it is difficult to accurately call individual SNP frequencies when the depth of sequence coverage is low, variant frequencies were averaged across larger regions. Results from regional SNP frequency averaging identified two loci, tc_rph1 on chromosome 8 and tc_rph2 on chromosome 9, which together are responsible for high level resistance. Identification of the two loci was possible with only 5-7× average coverage of the genome per dataset. These loci were subsequently confirmed by direct SNP marker analysis and fine-scale mapping. Individually, homozygosity of tc_rph1 or tc_rph2 results in only weak resistance to phosphine (estimated at up to 1.5-2.5× and 3-5× respectively), whereas in combination they interact synergistically to provide a high-level resistance >200×. The tc_rph2 resistance allele resulted in a significant fitness cost relative to the wild type allele in unselected beetles over eighteen generations. Conclusion We have validated the technique of linkage mapping by low-coverage sequencing of progeny from a simple genetic cross. The approach relied on regional averaging of SNP frequencies and was used to successfully identify candidate gene loci for phosphine resistance in T. castaneum. This is a relatively simple and rapid approach to identifying genomic regions associated with traits in defined genetic crosses that does not require any specialised statistical analysis.
Resumo:
BACKGROUND: In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). RESULTS: The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. CONCLUSION: Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks.
Resumo:
Commercial environments may receive only a fraction of expected genetic gains for growth rate as predicted from the selection environment. This fraction is result of undesirable genotype-by-environment interactions (GxE) and measured by the genetic correlation (rg) of growth between environments. Rapid estimates of genetic correlation achieved in one generation are notoriously difficult to estimate with precision. A new design is proposed where genetic correlations can be estimated by utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a single female. We compare a traditional phenotype analysis of growth to a threshold model where only the largest fish are genotyped for sire identification. The threshold model was robust to differences in family mortality differing up to 30%. The design is unique as it negates potential re-ranking of families caused by an interaction between common maternal environmental effects and growing environment. The design is suitable for rapid assessment of GxE over one generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. Different design scenarios were tested for bias and accuracy with a range of heritability values, number of half-sib families created, number of progeny within each full-sib family, number of fish genotyped, number of fish stocked, differing family survival rates and at various simulated genetic correlation levels.
Resumo:
New Zealand's Greenhouse Gas Inventory (the NZ Inventory) currently estimates methane (CH4) emissions from anaerobic dairy effluent ponds by: (1) determining the total pond volume across New Zealand; (2) dividing this volume by depth to obtain the total pond surface area; and (3) multiplying this area by an observational average CH4 flux. Unfortunately, a mathematically erroneous determination of pond volume has led to an imbalanced equation and a geometry error was made when scaling-up the observational CH4 flux. Furthermore, even if these errors are corrected, the nationwide estimate still hinges on field data from a study that used a debatable method to measure pond CH4 emissions at a single site, as well as a potentially inaccurate estimation of the amount of organic waste anaerobically treated. The development of a new methodology is therefore critically needed.