41 resultados para ELISA Kits

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop and validate an ELISA for detecting chicken antibodies to Eimeria tenella. An initial comparison of merozoite and sporozoite antigen preparations revealed few differences in their ability to monitor the onset, kinetics and magnitude of the antibody response suggesting that both antigens would be equally useful for development of an ELISA. Furthermore the cross-reactivity of these antigens with sera from birds infected with chicken Eimeria species was similar. The merozoite antigen was selected for further evaluation because it was easier to prepare. Discrimination between sera from birds experimentally infected with E. tenella and birds maintained in an Eimeria-free isolation facility was excellent. In sera collected from free-range layers and commercial broilers there also appeared to be clear discrimination between infected and uninfected birds. The ELISA should prove useful for monitoring infectivity in vaccination programmes in layer and breeder flocks and for assessing the effectiveness of biosecurity measures in broiler flocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of blocking ELISAs and haemagglutination-inhibition (HI) tests to detect antibodies in sera from chickens challenged with either Avibacterium (Haemophilus) paragallinarum isolate Hp8 (serovar A) or H668 (serovar C) was compared. Serum samples were examined weekly over the 9 weeks following infection. The results showed that the positive rate of serovar A specific antibody in the B-ELISA remained at 100% from the second week to the ninth week. In chickens given the serovar C challenge, the highest positive rate of serovar C specific antibody in the B-ELISA appeared at the seventh week (60% positive) and was then followed by a rapid decrease. The B-ELISA gave significantly more positives at weeks 2, 3, 7, 8 and 9 post-infection for serovar A and at week 7 post-infection for serovar C. In qualitative terms, for both serovar A and serovar C infections, the HI tests gave a lower percentage of positive sera at all time points except at 9 weeks post-infection with serovar C. The highest positive rate for serovar A HI antibodies was 70% of sera at the fourth and fifth weeks post-infection. The highest rate of serovar C HI antibodies was 20% at the fifth and sixth weeks post-infection. The results have provided further evidence of the suitability of the serovar A and C B-ELISAs for the diagnosis of infectious coryza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichinella surveillance in wildlife relies on muscle digestion of large samples which are logistically difficult to store and transport in remote and tropical regions as well as labour-intensive to process. Serological methods such as enzyme-linked immunosorbent assays (ELISAs) offer rapid, cost-effective alternatives for surveillance but should be paired with additional tests because of the high false-positive rates encountered in wildlife. We investigated the utility of ELISAs coupled with Western blot (WB) in providing evidence of Trichinella exposure or infection in wild boar. Serum samples were collected from 673 wild boar from a high- and low-risk region for Trichinella introduction within mainland Australia, which is considered Trichinella-free. Sera were examined using both an 'in-house' and a commercially available indirect-ELISA that used excretory secretory (E/S) antigens. Cut-off values for positive results were determined using sera from the low-risk population. All wild boar from the high-risk region (352) and 139/321 (43.3%) of the wild boar from the low-risk region were tested by artificial digestion. Testing by Western blot using E/S antigens, and a Trichinella-specific real-time PCR was also carried out on all ELISA-positive samples. The two ELISAs correctly classified all positive controls as well as one naturally infected wild boar from Gabba Island in the Torres Strait. In both the high- and low-risk populations, the ELISA results showed substantial agreement (k-value = 0.66) that increased to very good (k-value = 0.82) when WB-positive only samples were compared. The results of testing sera collected from the Australian mainland showed the Trichinella seroprevalence was 3.5% (95% C.I. 0.0-8.0) and 2.3% (95% C.I. 0.0-5.6) using the in-house and commercial ELISA coupled with WB respectively. These estimates were significantly higher (P < 0.05) than the artificial digestion estimate of 0.0% (95% C.I. 0.0-1.1). Real-time PCR testing of muscle from seropositive animals did not detect Trichinella DNA in any mainland animals, but did reveal the presence of a second larvae-positive wild boar on Gabba Island, supporting its utility as an alternative, highly sensitive method in muscle examination. The serology results suggest Australian wildlife may have been exposed to Trichinella parasites. However, because of the possibility of non-specific reactions with other parasitic infections, more work using well-defined cohorts of positive and negative samples is required. Even if the specificity of the ELISAs is proven to be low, their ability to correctly classify the small number of true positive sera in this study indicates utility in screening wild boar populations for reactive sera which can be followed up with additional testing. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abacá mosaic virus (AbaMV) is related to members of the sugarcane mosaic virus subgroup of the genus Potyvirus. The ~2 kb 3′ terminal region of the viral genome was sequenced and, in all areas analysed, found to be most similar to Sugarcane mosaic virus (SCMV) and distinct from Johnsongrass mosaic virus (JGMV), Maize dwarf mosaic virus (MDMV) and Sorghum mosaic virus (SrMV). Cladograms of the 3′ terminal region of the NIb protein, the coat protein core and the 3′ untranslated region showed that AbaMV clustered with SCMV, which was a distinct clade and separate from JGMV, MDMV and SrMV. The N-terminal region of the AbaMV coat protein had a unique amino acid repeat motif different from those previously published for other strains of SCMV. The first experimental transmission of AbaMV from abacá (Musa textilis) to banana (Musa sp.), using the aphid vectors Rhopalosiphum maidis and Aphis gossypii, is reported. Polyclonal antisera for the detection of AbaMV in western blot assays and ELISA were prepared from recombinant coat protein expressed in E. coli. A reverse transcriptase PCR diagnostic assay, with microtitre plate colourimetric detection, was developed to discriminate between AbaMV and Banana bract mosaic virus, another Musa-infecting potyvirus. Sequence data, host reactions and serological relationships indicate that AbaMV should be considered a distinct strain of SCMV, and the strain designation SCMV-Ab is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The papaya strain of Papaya ringspot virus (PRSV-P), the cause of papaya ringspot disease, was confirmed in French Polynesia and the Cook Islands by double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA). In French Polynesia, the virus has probably been on the islands of Tahiti and Moorea for several years, but appears not to have spread to eight other islands. In contrast, PRSV-P has only recently appeared in the Cook Islands and is now the subject of an eradication campaign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy® or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to 1 infected in 800 samples with pepper but never detecting more than 1 infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Banana bunchy top virus (BBTV) was readily transmitted through tissue culture in banana (Mum sp.) cv. Lady finger (AAB) and Cavendish cv. Williams (AAA). Lines derived from infected and healthy field plants had similar in vitro multiplication rates. BBTV infected in vitro cultures displayed symptoms of stunting, leaf curling, chlorotic and green flecks, and poor root growth. Symptoms became milder with time, and were often difficult to discern in older, rapidly multiplying cultures. A triple antibody sandwich ELISA using polyclonal and monoclonal antibodies was very efficient for detecting BBTV in vitro. Symptomless, ELISA-negative plants arose in 10 out of 11 lines derived from BBTV-infected field plants and first appeared after 9 months continuous in vitro culture at a constant 28OC. Meristem tip culture or heat therapy was not used. These plants remained symptomless and ELISA-negative after planting out in the glasshouse (individual plants checked for up to 16 months). The implications of this inconsistent transmission of BBTV for germplasm indexing and exchange are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunogenicity of P97 adhesin repeat region R1 (P97R1) of Mycoplasma hyopneumoniae, an important pathogenesis-associated region of P97, was evaluated in mice as a mucosal vaccine. Mice were immunized orally with attenuated Salmonella typhimurium aroA strain CS332 harbouring a eukaryotic or prokaryotic expression vector encoding IP97R1. Local and systemic immune responses were analysed by ELISA on mouse sera, lung washes and splenocyte supernatants following splenocyte stimulation with specific antigens in vitro. Although no P97R1-specific antibody responses were detected in serum and lung washes, significant gamma interferon was produced by P97R1-stimulated splenocytes from mice immunized orally with S. typhimurium aroA harbouring either expression system, indicating induction of a cell-mediated immune response. These results suggested that live bacterial vectors carrying DNA vaccines or expressing heterologous antigens preferentially induce a Th1 response. Surprisingly, however, mice immunized with the vaccine carrier S. typhimurium aroA CS332 induced serum IgG, but not mucosal IgA, against P97R1 or S. typhimurium aroA CS332 whole-cell lysate, emphasizing the importance of assessing the suitability of attenuated S. typhimurium antigen-carrier delivery vectors in the mouse model prior to their evaluation as potential vaccines in the target species, which in this instance was pigs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2002 at Virginia, South Australia, capsicum cultivars having the Tsw resistance gene against Tomato spotted wilt virus (TSWV) developed symptoms typical of TSWV infection and several glasshouse-grown crops were almost 100% infected. Samples reacted with TSWV antibodies in ELISA. Virus isolates from infected plants induced severe systemic symptoms, rather than a hypersensitive reaction, when inoculated onto capsicum cultivars and Capsicum chinense genotypes ( PI 152225 and PI 159236) that carry the Tsw resistance gene. Isolates virulent towards the Tsw gene had molecular and biological properties very similar to standard TSWV isolates, including a hypersensitive reaction in Sw-5 (TSWV-resistant) tomato genotypes. Tsw-virulent isolates were found during surveys at Virginia in 2002 and 2004 in both TSWV-resistant and susceptible cultivars of capsicum and tomato.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A survey was conducted to establish the distribution of the liver fluke, Fasciola hepatica, in the state of Queensland, Australia, and to evaluate the impact of the introduced snail intermediate hosts, Pseudosuccinia columella and Austropeplea viridis. Serum samples from a total of 5103 homebred cattle in 142 beef herds distributed throughout the state and 523 pooled milk samples from dairy herds from the state's major dairying regions were tested for antibodies to F. hepatica by ELISA. Snails were collected on infected properties around the limits of the F. hepatica distribution. F. hepatica infection was detected in 44 dairy herds and two beef herds. The distribution of infected herds indicates that F. hepatica is established only in southeast Queensland. The distribution there was patchy but the parasite was more widespread than suggested by an earlier survey. The predominant intermediate host species found along the northern limit of the distribution was P. columella. We conclude that the introduction of P. columella and A. viridis has not yet had a major impact on the distribution of F. hepatica in Queensland. However, the presence of P. columella, which is much more adaptable to tropical habitats than the native intermediate host, Austropeplea tomentosa, at the northern limit of the F. hepatica distribution suggests that there is potential for the parasite to expand its range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Chapter 1, the literature relating to rabies virus and the rabies like lyssaviruses is reviewed. In Chapter 2, data are presented from 1170 diagnostic submissions for ABLV testing by fluorescent antibody test (Centocor FAT). All 27 non-bat submissions were ABLV-negative. Of 1143 bat accessions 74 (16%) were ABLV-positive, including 69 of 974 (7.1%) flying foxes (Pteropus spp.), 5 of 7 (71.4%) Saccolaimus flaviventris (Yellow-bellied sheathtail bats), none of 151 other microchiropteran bats, and none of 11 unidentified bats. Statistical analysis of data from 868 wild Black, Grey-headed, Little Red and Spectacled flying foxes (Pteropus alecto, P. poliocephalus, P. scapulatus, and P. conspicillatus) indicated that three factors; species, health status and age were associated with significant (p< 0.001) differences in the proportion of ABLV-positive bats. Other factors including sex, whether the bat bit a person or animal, region, year, and season submitted, were not associated with ABLV. Case data for 74 ABLV-positive bats, including the circumstances in which they were found and clinical signs, is presented. In Chapter 3, the aetiological diagnosis was investigated for 100 consecutive flying fox submissions with neurological signs. ABLV (32%), spinal and head injuries (29%), and neuro-angiostrongylosis (18%) accounted for most neurological syndromes in flying foxes. No evidence of lead poisoning was found in unwell (n=16) or healthy flying foxes (n=50). No diagnosis was reached for 16 cases, all of which were negative for ABLV by TaqMan PCR. The molecular diversity of ABLV was examined in Chapter 4 by sequencing 36 bases of the leader sequence, the entire N gene, and start of the P gene of 28 isolates from pteropid bats and 3 isolates from Yellow-bellied sheathtail (YBST) bats. Phylogenetic analysis indicated all ABLV isolates clustered together as a discrete group within the Lyssavirus genera closely related to rabies virus and European bat lyssavirus-2 isolates. The ABLV lineage consisted of two variants; one (ybst-ABLV) consisted of isolates only from YBST bats, the other (pteropid-ABLV) was common to Black, Grey-headed and Little Red flying foxes. No associations were found between the sequences and either the geographical location or year found, or individual flying fox species. In Chapter 5, 15 inocula prepared from the brains or salivary glands of naturally-infected bats were evaluated by intracerebral (IC) and footpad (FP) inoculation of Quackenbush mice in order to select and characterize a highly virulent inoculum for further use in bats (Inoculum 5). In Chapter 6, nine Grey-headed flying foxes were inoculated with 105.2 to 105.5 MICED50 of Inoculum 5 divided into four sites, left footpad, pectoral muscle, temporal muscle and muzzle. Another bat was inoculated with half this dose divided into the footpad and pectoral muscle only. Seven of 10 bats developed clinical disease of 1 to 4 days duration between PI-days 10 and 19 and were shown to be ABL-positive by FAT, HAM immunoperoxidase staining, virus isolation in mice, and TaqMan PCR. Five of the seven bats displayed overt aggression, one died during a seizure, and one showed intractable agitation, pacing, tremors, and ataxia. Viral antigen was demonstrated throughout the central and peripheral nervous systems and in the epithelial cells of the submandibular salivary glands (n=4). All affected bats had mild to moderate non-suppurative meningoencephalitis and severe ganglioneuritis. No ABLV was detected in three bats that remained well until the end of the experiment on day 82. One survivor developed a strong but transient antibody response. In Chapter 7, the relative virulence of inocula prepared from the brains and salivary glands of experimentally infected flying foxes was evaluated in mice by IC and FP inoculation and TaqMan assay. The effects in mice were correlated to the TaqMan CT value and indicated a crude association between virulence and CT value that has potential application in the selection of inocula. In Chapter 8, 36 Black and Grey-headed flying foxes were vaccinated with one (day 0) or two (+ day 28) doses of Nobivac rabies vaccine and co-vaccinated with keyhole limpet haemocyanin (KLH). All bats responded to the Nobivac vaccine with a rabies-RFFIT titer > 0.5 IU/mL that is nominally indicative of protective immunity. Plasma from bats with rabies titres >2 IU/mL had cross-neutralising ABLV titres >1:154. A specifically developed ELISA detected a strong but transient response to KLH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries - Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 2001. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed reprint information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2001. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of avocadoes. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website http://www.deedi.qld.gov.au/ (Select: Queenslands Industries - Agriculture Link) This publication has been reprinted as a digital book without any changes to the content published in 2000. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2000. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of papaw. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries - Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 1999. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1999. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of mangoes. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.daf.qld.gov.au This publication has been reprinted as a digital book without any changes to the content published in 1997. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1997. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of citrus. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.