2 resultados para Drilling and boring
em eResearch Archive - Queensland Department of Agriculture
Resumo:
An aging electricity distribution system and reduced availability of naturally durable tropical hardwoods in Australia will combine in the next decade to produce a major shortage of poles. One approach to mitigating this shortage is to utilize lower durability species and improve the penetration of preservatives into the refractory heartwood by introducing additional pretreatment processes. A potential method for improving preservative penetration in the critical ground-line zone is through-boring. This process, in which holes are drilled through the pole perpendicular to the grain in the ground-line zone, is widely used in the western United States for treatment of Douglas-fir and may be Suitable for many Australian wood species. The potential for improving heartwood penetration in eucalypts with alkaline-copper-quaternary (ACQ) compound was assessed on heartwood specimens from four species (Eucalyptus cloeziana F.Muell., E. grandis W.Hill ex Maiden, E. obliqua L'Her. and E. pellita F.Muell.) and Lophostemon confertus (R.Br.) Peter G.Wilson & J.T.Wateril). Longitudinal ACQ penetration was extremely shallow in L. confertus and only slightly better in E. cloeziana. Longitudinal penetration was good in both E. obliqua and E. pellita, although there was some variation in treatment results with length of pressure period. The results suggest that through-boring might be a reasonable approach for achieving heartwood penetration in some Eucalyptus species, although further studies are required to assess additional treatment schedules and to determine the effects of the process oil flexural properties of the poles.
Resumo:
Parthenium (Parthenium hysterophorus L.) is one of the most aggressive herbaceous weeds of the Asteraceae family. It is widely distributed, almost across the world and has become the most important invasive weed. Comprehensive information on interference and control of this devastating species is required to facilitate better management decisions. A broad review on the interference and management of this weed is presented here. Inspite of its non-tropical origin, parthenium grows quite successfully under a wide range of environmental conditions. It is spreading rapidly in Australia, Western Africa, Asia, and Caribbean countries, and has become a serious weed of pastures, wastelands, roadsides, railwaysides, water courses, and agricultural crops. The infestations of parthenium have been reported to reduce grain and forage yields by 40–90%. The spread of parthenium has been attributed to its allelopathic activity, strong competitiveness for soil moisture and nutrients, and its capability to exploit natural biodiversity. Allelochemicals released from parthenium has been reported to decrease germination and growth of agronomic crops, vegetables, trees, and many other weed species. Growth promoting effects of parthenium extracts at low concentrations have also been reported in certain crops. Many pre- and post-emergence herbicides have been evaluated for the control of parthenium in cropped and non-cropped areas. The most effective herbicides are clomazone, metribuzin, atrazine, glyphosate, metsulfuron methyl, butachlor, bentazone, dicamba, and metsulfuron methyl. Extracts, residues, and essential oils of many allelopathic herbs (Cassia, Amaranthus, and Xanthium species), grasses (Imperata and Desmostachya species), and trees (Eucalyptus, Azadirachta, Mangifera species, etc.) have demonstrated inhibitory activities on seed germination and seedling growth of parthenium. Metabolites of several fungi, e.g., Fusarium oxysporun and Fusarium monilifonne, exhibit bioherbicidal activity against seeds and seedlings of this weed. Intercropping, displacement by competitive plant species like Cassia species, bisset bluegrass, florgen blugress, buffelgrass, along with the use of biological control agents like Mexican beetle, seed-feeding and stem-boring weevils, stem-galling and leaf-mining moth, and sap-feeding plant hopper, have been reported as possible strategies for the management of parthenium. An appropriate integration of these approaches could help minimize spread of parthenium and provide sustainable weed management with reduced environmental concerns.