15 resultados para Drainage.

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adoption of conservation tillage practices on Red Ferrosol soils in the inland Burnett area of south-east Queensland has been shown to reduce runoff and subsequent soil erosion. However, improved infiltration resulting from these measures has not improved crop performance and there are suggestions of increased loss of soil water via deep drainage. This paper reports data monitoring soil water under real and artificial rainfall events in commercial fields and long-term tillage experiments, and uses the data to explore the rate and mechanisms of deep drainage in this soil type. Soils were characterised by large drainable porosities (≥0.10 m3/m3) in all parts of the profile to depths of 1.50 m, with drainable porosity similar to available water content (AWC) at 0.25 and 0.75 m, but >60% higher than AWC at 1.50 m. Hydraulic conductivity immediately below the tilled layer in both continuously cropped soils and those after a ley pasture phase was shown to decline with increasing soil moisture content, although the rate of decline was much greater in continuously cropped soil. At moisture contents approaching the drained upper limit (pore water pressure = -100cm H2O), estimates of saturated hydraulic conductivity after a ley pasture were 3-5 times greater than in continuously cropped soil, suggesting much greater rates of deep drainage in the former when soils are moist. Hydraulic tensiometers and fringe capacitance sensors monitored during real and artificial rainfall events showed evidence of soils approaching saturation in the surface layers (top 0.30-0.40 m), but there was no evidence of soil moistures exceeding the drained upper limit (i.e. pore water pressures ≤ -100 cm H2O) in deeper layers. Recovery of applied soil water within the top 1.00-1.20 m of the profile during or immediately after rainfall events declined as the starting profile moisture content increased. These effects were consistent with very rapid rates of internal drainage. Sensors deeper in the profile were unable to detect this drainage due to either non-uniformity of conducting macropores (i.e. bypass flow) or unsaturated conductivities in deeper layers that far exceed the saturated hydraulic conductivity of the infiltration throttle at the bottom of the cultivated layer. Large increases in unsaturated hydraulic conductivities are likely with only small increases in water content above the drained upper limit. Further studies with drainage lysimeters and large banks of hydraulic tensiometers are planned to quantify drainage risk in these soil types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two examples of GIS-based multiple-criteria evaluations of plantation forests are presented. These desktop assessments use available topographical, geological and pedological information to establish the risk of occurrence of certain environmentally detrimental processes. The first case study is concerned with the risk that chemical additives (i.e. simazine) applied within the forestry landscape may reach the drainage system. The second case study assesses the vulnerability of forested areas to landslides. The subject of the first multiple-criteria evaluation (MCE) was a 4 km2 logging area, which had been recently site-prepared for a Pinus plantation. The criteria considered relevant to the assessment were proximity to creeks, slope, soil depth to the restrictive layer (i.e. potential depth to a perched water table) and soil erodability (based on clay content). The output of the MCE was in accordance with field observations, showing that this approach has the potential to provide management support by highlighting areas vulnerable to waterlogging, which in turn can trigger overland flow and export of pollutants to the local stream network. The subject of the second evaluation was an Araucaria plantation which is prone to landslips during heavy rain. The parameters included in the assessment were drainage system, the slope of the terrain and geological features such as rocks and structures. A good correlation between the MCE results and field observations was found, suggesting that this GIS approach is useful for the assessment of natural hazards. Multiple-criteria evaluations are highly flexible as they can be designed in either vector or raster format, depending on the type of available data. Although tested on specific areas, the MCEs presented here can be easily used elsewhere and assist both management intervention and the protection of the adjacent environment by assessing the vulnerability of the forest landscape to either introduced chemicals or natural hazards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tillage is defined here in a broad sense, including disturbance of the soil and crop residues, wheel traffic and sowing opportunities. In sub-tropical, semi-arid cropping areas in Australia, tillage systems have evolved from intensively tilled bare fallow systems, with high soil losses, to reduced and no tillage systems. In recent years, the use of controlled traffic has also increased. These conservation tillage systems are successful in reducing water erosion of soil and sediment-bound chemicals. Control of runoff of dissolved nutrients and weakly sorbed chemicals is less certain. Adoption of new practices appears to have been related to practical and economic considerations, and proved to be more profitable after a considerable period of research and development. However there are still challenges. One challenge is to ensure that systems that reduce soil erosion, which may involve greater use of chemicals, do not degrade water quality in streams. Another challenge is to ensure that systems that improve water entry do not increase drainage below the crop root zone, which would increase the risk of salinity. Better understanding of how tillage practices influence soil hydrology, runoff and erosion processes should lead to better tillage systems and enable better management of risks to water quality and soil health. Finally, the need to determine the effectiveness of in-field management practices in achieving stream water quality targets in large, multi-land use catchments will challenge our current knowledge base and the tools available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the subtropics of Australia, irrigated temperate species are the key to reliable cool season feed on dairy farms. Persistence of perennial species is a major limitation to achieving reliable production from irrigated areas and yearly sowings of annual ryegrasses have replaced them as the most productive cool season forage production system in the subtropics. This series of experiments evaluated the yield, and resistance to rust damage, of commercially available cultivars and breeders' lines of annually sown ryegrasses (Lolium multiflorum, L. rigidum, L. x boucheanum and L perenne) in pure, nitrogen-fertilised swards under irrigation in the subtropics over a 22-year period. Barberia and Aristocrat 2 were the most adapted cultivars for subtropical conditions, producing high yields (119 and 114% of mean yield, respectively) and demonstrating the least rust damage. Newer selections from New Zealand, South African, United States of America and European breeding programs are performing better under subtropical conditions than older cultivars, particularly if a component of the selection process has been conducted in that environment. Cultivars such as Passerei Plus, Crusader, Hulk, Status and Warrior are examples of this process, producing between 105 and 115% of mean yield. Yields of annual ryegrass cultivars, which have been available or still are available for sale in Australia, ranged from 14-30 t/ha DM, depending on cultivar, site and seasonal conditions. Yields were lower at the site, which had inferior soil structure and drainage. Up to 50% of yield was produced in the 3 winter months. There was a trend towards improved yields and better tolerance of crown rust from experimental lines in the subtropics, as breeders strive for wider adaptation. Around 70% of the variation in total yield of annual ryegrass and 50 and 60% of the variation in winter and spring yield, respectively, were significantly explained by cultivar, site and climatic variables in autumn, winter and spring. While level of rust damage had no effect on total or seasonal yields, it affected the amount of green leaf available in spring. Under subtropical conditions, winter, spring and overall (autumn to mid-summer) temperatures influenced the- development of rust, which along with cultivar, accounted for 46% of the variation in rust damage. Cultivars showed a range of adaptation, with some performing well only under adverse conditions, some being well adapted to all conditions and some which performed well only under favoured conditions. Cultivars with high winter yields were most suited to subtropical conditions and included Aristocrat 2 (now released as CM 108), Barberia, Warrior, Crusader, Status, Passerei Plus and Hulk. Short growing season types such as Winter Star and T Rex performed well in winter but achieved lower total production, and long season cultivars such as Flanker rarely achieved their potential because of unfavourable conditions in late summer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stephen Setter, Melissa Setter, Michael Graham and Joe Vitelli recently published their paper 'Buoyancy and germination of pond apple (Annona glabra L.) propagules in fresh and salt water' in Proceedings of the 16th Australian Weeds Conference. Stephen also presented this paper at the conference. Pond apple is an aggressive woody weed which has invaded many wetlands, drainage lines and riparian systems across the Wet Tropics bioregion of Far North Queensland. Most fruit and seed produced by pond apple during the summer wet season fall directly into creeks, river banks, flood plains and swamps from where they are dispersed. They reported that pond apple seeds can float for up to 12 months in either fresh or salt water, with approximately 38% of these seeds germinating in a soil medium once removed from the experimental water tanks at South Johnstone. Their study suggested that the removal of reproductive trees from areas adjacent to creeks and rivers will have an immediate impact on potential spread of pond apple by limiting seed input into flowing water bodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change projections for Australia predict increasing temperatures, changes to rainfall patterns, and elevated atmospheric carbon dioxide (CO2) concentrations. The aims of this study were to predict plant production responses to elevated CO2 concentrations using the SGS Pasture Model and DairyMod, and then to quantify the effects of climate change scenarios for 2030 and 2070 on predicted pasture growth, species composition, and soil moisture conditions of 5 existing pasture systems in climates ranging from cool temperate to subtropical, relative to a historical baseline. Three future climate scenarios were created for each site by adjusting historical climate data according to temperature and rainfall change projections for 2030, 2070 mid-and 2070 high-emission scenarios, using output from the CSIRO Mark 3 global climate model. In the absence of other climate changes, mean annual pasture production at an elevated CO2 concentration of 550 ppm was predicted to be 24-29% higher than at 380 ppm CO2 in temperate (C-3) species-dominant pastures in southern Australia, with lower mean responses in a mixed C-3/C-4 pasture at Barraba in northern New South Wales (17%) and in a C-4 pasture at Mutdapilly in south-eastern Queensland (9%). In the future climate scenarios at the Barraba and Mutdapilly sites in subtropical and subhumid climates, respectively, where climate projections indicated warming of up to 4.4 degrees C, with little change in annual rainfall, modelling predicted increased pasture production and a shift towards C-4 species dominance. In Mediterranean, temperate, and cool temperate climates, climate change projections indicated warming of up to 3.3 degrees C, with annual rainfall reduced by up to 28%. Under future climate scenarios at Wagga Wagga, NSW, and Ellinbank, Victoria, our study predicted increased winter and early spring pasture growth rates, but this was counteracted by a predicted shorter spring growing season, with annual pasture production higher than the baseline under the 2030 climate scenario, but reduced by up to 19% under the 2070 high scenario. In a cool temperate environment at Elliott, Tasmania, annual production was higher than the baseline in all 3 future climate scenarios, but highest in the 2070 mid scenario. At the Wagga Wagga, Ellinbank, and Elliott sites the effect of rainfall declines on pasture production was moderated by a predicted reduction in drainage below the root zone and, at Ellinbank, the use of deeper rooted plant systems was shown to be an effective adaptation to mitigate some of the effect of lower rainfall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface losses of nitrogen from horticulture farms in coastal Queensland, Australia, may have the potential to eutrophy sensitive coastal marine habitats nearby. A case-study of the potential extent of such losses was investigated in a coastal macadamia plantation. Nitrogen losses were quantified in 5 consecutive runoff events during the 13-month study. Irrigation did not contribute to surface flows. Runoff was generated by storms at combined intensities and durations that were 20–40 mm/h for >9 min. These intensities and durations were within expected short-term (1 year) and long-term (up to 20 years) frequencies of rainfall in the study area. Surface flow volumes were 5.3 ± 1.1% of the episodic rainfall generated by such storms. Therefore, the largest part of each rainfall event was attributed to infiltration and drainage in this farm soil (Kandosol). The estimated annual loss of total nitrogen in runoff was 0.26 kg N/ha.year, representing a minimal loading of nitrogen in surface runoff when compared to other studies. The weighted average concentrations of total sediment nitrogen (TSN) and total dissolved nitrogen (TDN) generated in the farm runoff were 2.81 ± 0.77% N and 1.11 ± 0.27 mg N/L, respectively. These concentrations were considerably greater than ambient levels in an adjoining catchment waterway. Concentrations of TSN and TDN in the waterway were 0.11 ± 0.02% N and 0.50 ± 0.09 mg N/L, respectively. The steep concentration gradient of TSN and TDN between the farm runoff and the waterway demonstrated the occurrence of nutrient loading from the farming landscapes to the waterway. The TDN levels in the stream exceeded the current specified threshold of 0.2–0.3 mg N/L for eutrophication of such a waterway. Therefore, while the estimate of annual loading of N from runoff losses was comparatively low, it was evident that the stream catchment and associated agricultural land uses were already characterised by significant nitrogen loadings that pose eutrophication risks. The reported levels of nitrogen and the proximity of such waterways (8 km) to the coastline may have also have implications for the nearshore (oligotrophic) marine environment during periods of turbulent flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Poor land condition resulting from unsustainable grazing practices can reduce enterprise profitability and increase water, sediment and associated nutrient runoff from properties and catchments. This paper presents the results of a 6 year field study that used a series of hillslope flume experiments to evaluate the impact of improved grazing land management (GLM) on hillslope runoff and sediment yields. The study was carried out on a commercial grazing property in a catchment draining to the Burdekin River in northern Australia. During this study average ground cover on hillslopes increased from ~35% to ~75%, although average biomass and litter levels are still relatively low for this landscape type (~60 increasing to 1100 kg of dry matter per hectare). Pasture recovery was greatest on the upper and middle parts of hillslopes. Areas that did not respond to the improved grazing management had <10% cover and were on the lower slopes associated with the location of sodic soil and the initiation of gullies. Comparison of ground cover changes and soil conditions with adjacent properties suggest that grazing management, and not just improved rainfall conditions, were responsible for the improvements in ground cover in this study. The ground cover improvements resulted in progressively lower runoff coefficients for the first event in each wet season, however, runoff coefficients were not reduced at the annual time scale. The hillslope annual sediment yields declined by ~70% on two out of three hillslopes, although where bare patches (with <10% cover) were connected to gullies and streams, annual sediment yields increased in response to higher rainfall in latter years of the study. It appears that bare patches are the primary source areas for both runoff and erosion on these hillslopes. Achieving further reductions in runoff and erosion in these landscapes may require management practices that improve ground cover and biomass in bare areas, particularly when they are located adjacent to concentrated drainage lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the 1970s, acid sulfate soils (ASS) distributed within about 720 ha of predominantly mangrove and salt pan wetlands at East Trinity in north Queensland were developed after the area was isolated from tidal flooding by a surrounding seawall and the installation of tidal gates on major drainage creeks. Following drainage and oxidation of these estuarine acidic sediments, resultant acid leachate caused considerable, ongoing environmental problems including regular fish kills. A rehabilitation program covering much of these former tidal wetlands commenced in 2000 using a lime-assisted tidal exchange management regime. Changes in the established populations of estuarine fish and crustaceans were monitored in the two creeks (Firewood and Hills Creeks) where tidal flows were reinstated. In Firewood Creek between 2001 and 2005, there was a progressive increase in fish species richness, diversity and abundance. The penaeid prawn Fenneropenaeus merguiensis was a major component of the cast net catches in the lower sections of both Firewood and Hills Creeks but its relative abundance decreased upstream of the tidal gates on the seawall. Well established stocks of predominantly juvenile, male Scylla serrata resident upstream of the tidal gates indicated suitable habitats with acceptable water and sediment quality and adequate availability of food. The regular fish kills that occurred prior to the management regime abated and, overall, the implementation of the rehabilitation program is yielding positive benefits for the local fisheries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2002, AFL Queensland and the Brisbane Lions Football Club approached the Department of Primary Industries and Fisheries (Queensland) for advice on improving their Premier League sports fields. They were concerned about player safety and dissatisfaction with playing surfaces, particularly uneven turf cover and variable under-foot conditions. They wanted to get the best from new investments in ground maintenance equipment and irrigation infrastructure. Their sports fields were representative of community-standard, multi-use venues throughout Australia; generally ‘natural’ soil fields, with low maintenance budgets, managed by volunteers. Improvements such as reconstruction, drainage, or regular re-turfing are generally not affordable. Our project aimed to: (a) Review current world practice and performance benchmarks; (b) Demonstrate best-practice management for community-standard fields; (c) Adapt relevant methods for surface performance testing; (d) Assess current soils, and investigate useful amendments; (e) Improve irrigation system performance; and (e) Build industry capacity and encourage patterns for ongoing learning. Most global sports field research focuses on elite, sand-based fields. We adjusted elite standards for surface performance (hardness, traction, soil moisture, evenness, sward cover/height) and maintenance programs, to suit community-standard fields with lesser input resources. In regularly auditing ground conditions across 12 AFLQ fields in SE QLD, we discovered surface hardness (measured by Clegg Hammer) was the No. 1 factor affecting player safety and surface performance. Other important indices were turf coverage and surface compaction (measured by penetrometer). AFLQ now runs regularly audits affiliated fields, and closes grounds with hardness readings greater than 190 Gmax. Aerating every two months was the primary mechanical practice improving surface condition and reducing hardness levels to < 110 Gmax on the renovated project fields. With irrigation installation, these fields now record surface conditions comparable to elite fields. These improvements encouraged many other sporting organisations to seek advice / assistance from the project team. AFLQ have since substantially invested in an expanded ground improvement program, to cater for this substantially increased demand. In auditing irrigation systems across project fields, we identified low maintenance (with < 65% of sprinklers operating optimally) as a major problem. Retrofitting better nozzles and adjusting sprinklers improved irrigation distribution uniformity to 75-80%. Research showed that reducing irrigation frequency to weekly, and preparedness to withhold irrigation longer after rain, reduced irrigation requirement by 30-50%, compared to industry benchmarks of 5-6 ML/ha/annum. Project team consultation with regulatory authorities enhanced irrigation efficiency under imposed regional water restrictions. Laboratory studies showed incorporated biosolids / composts, or topdressed crumb rubber, improved compaction resistance of soils. Field evaluations confirmed compost incorporation significantly reduced surface hardness of high wear areas in dry conditions, whilst crumb rubber assisted turf persistence into early winter. Neither amendment was a panacea for poor agronomic practices. Under the auspices of the project Trade Mark Sureplay®, we published > 80 articles, and held > 100 extension activities involving > 2,000 participants. Sureplay® has developed a multi-level curator training structure and resource materials, subject to commercial implementation. The partnerships with industry bodies (particularly AFLQ), frequent extension activities, and engagement with government/regulatory sectors have been very successful, and are encouraged for any future work. Specific aspects of sports field management for further research include: (a) Understanding of factors affecting turf wear resistance and recovery, to improve turf persistence under wear; (b) Simple tests for pinpointing areas of fields with high hardness risk; and (c) Evaluation of new irrigation infrastructure, ‘water-saving’ devices, and irrigation protocols, in improving water use and turf cover outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is proposed that over 4-5 years of study period, multiple collaborative sites will be established with on-farm cooperators to demonstrate better integration of crop-legume sequencing for improved root growth and functioning under limited water, leading to improved productivity and carbon sequestration, and reduced runoff and deep drainage losses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss of nitrogen in deep drainage from agriculture is an important issue for environmental and economic reasons, but limited field data is available for tropical crops. In this study, nitrogen (N) loads leaving the root zone of two major humid tropical crops in Australia, sugarcane and bananas, were measured. The two field sites, 57 km apart, had a similar soil type (a well drained Dermosol) and rainfall (∼2700 mm year -1) but contrasting crops and management. A sugarcane crop in a commercial field received 136-148 kg N ha -1 year -1 applied in one application each year and was monitored for 3 years (first to third ratoon crops). N treatments of 0-600 kg ha -1 year -1 were applied to a plant and following ratoon crop of bananas. N was applied as urea throughout the growing season in irrigation water through mini-sprinklers. Low-suction lysimeters were installed at a depth of 1 m under both crops to monitor loads of N in deep drainage. Drainage at 1 m depth in the sugarcane crops was 22-37% of rainfall. Under bananas, drainage in the row was 65% of rainfall plus irrigation for the plant crop, and 37% for the ratoon. Nitrogen leaching loads were low under sugarcane (<1-9 kg ha -1 year -1) possibly reflecting the N fertiliser applications being reasonably matched to crop requirements and at least 26 days between fertiliser application and deep drainage. Under bananas, there were large loads of N in deep drainage when N application rates were in excess of plant demand, even when applied fortnightly. The deep drainage loss of N attributable to N fertiliser, calculated by subtracting the loss from unfertilised plots, was 246 and 641 kg ha -1 over 2 crop cycles, which was equivalent to 37 and 63% of the fertiliser application for treatments receiving 710 and 1065 kg ha -1, respectively. Those rates of fertiliser application resulted in soil acidification to a depth of 0.6 m by as much as 0.6 of a unit at 0.1-0.2 m depth. The higher leaching losses from bananas indicated that they should be a priority for improved N management. Crown Copyright © 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this review is to report changes in irrigated cotton water use from research projects and on-farm practice-change programs in Australia, in relation to both plant-based and irrigation engineering disciplines. At least 80% of the Australian cotton-growing area is irrigated using gravity surface-irrigation systems. This review found that, over 23 years, cotton crops utilise 6-7ML/ha of irrigation water, depending on the amount of seasonal rain received. The seasonal evapotranspiration of surface-irrigated crops averaged 729mm over this period. Over the past decade, water-use productivity by Australian cotton growers has improved by 40%. This has been achieved by both yield increases and more efficient water-management systems. The whole-farm irrigation efficiency index improved from 57% to 70%, and the crop water use index is >3kg/mm.ha, high by international standards. Yield increases over the last decade can be attributed to plant-breeding advances, the adoption of genetically modified varieties, and improved crop management. Also, there has been increased use of irrigation scheduling tools and furrow-irrigation system optimisation evaluations. This has reduced in-field deep-drainage losses. The largest loss component of the farm water balance on cotton farms is evaporation from on-farm water storages. Some farmers are changing to alternative systems such as centre pivots and lateral-move machines, and increasing numbers of these alternatives are expected. These systems can achieve considerable labour and water savings, but have significantly higher energy costs associated with water pumping and machine operation. The optimisation of interactions between water, soils, labour, carbon emissions and energy efficiency requires more research and on-farm evaluations. Standardisation of water-use efficiency measures and improved water measurement techniques for surface irrigation are important research outcomes to enable valid irrigation benchmarks to be established and compared. Water-use performance is highly variable between cotton farmers and farming fields and across regions. Therefore, site-specific measurement is important. The range in the presented datasets indicates potential for further improvement in water-use efficiency and productivity on Australian cotton farms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing requirement for more astute land resource management through efficiencies in agricultural inputs in a sugar cane production system. A precision agriculture (PA) approach can provide a pathway for a sustainable sugarcane production system. One of the impediments to the adoption of PA practices is access to paddock-scale mapping layers displaying variability in soil properties, crop growth and surface drainage. Variable rate application (VRA) of nutrients is an important component of PA. However, agronomic expertise within PA systems has fallen well behind significant advances in PA technologies. Generally, advisers in the sugar industry have a poor comprehension of the complex interaction of variables that contribute to within-paddock variations in crop growth. This is regarded as a significant impediment to the progression of PA in sugarcane and is one of the reasons for the poor adoption of VRA of nutrients in a PA approach to improved sugar cane production. This project therefore has established a number of key objectives which will contribute to the adoption of PA and the staged progression of VRA supported by relevant and practical agronomic expertise. These objectives include provision of base soils attribute mapping that can be determined using Veris 3100 Electrical Conductivity (EC) and digital elevation datasets using GPS mapping technology for a large sector of the central cane growing region using analysis of archived satellite imagery to determine the location and stability of yield patterns over time and in varying seasonal conditions on selected project study sites. They also include the stablishment of experiments to determine appropriate VRA nitrogen rates on various soil types subjected to extended anaerobic conditions, and the establishment of trials to determine nitrogen rates applicable to a declining yield potential associated with the aging of ratoons in the crop cycle. Preliminary analysis of archived yield estimation data indicates that yield patterns remain relatively stable overtime. Results also indicate the where there is considerable variability in EC values there is also significant variation in yield.