5 resultados para Drainage, House

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributions of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in litter of a compacted earth floor broiler house in southeastern Queensland, Australia, were studied over two flocks. Larvae were the predominant stage recorded. Significantly low densities occurred in open locations and under drinker cups where chickens had complete access, whereas high densities were found under feed pans and along house edges where chicken access was restricted. For each flock, lesser mealworm numbers increased at all locations over the first 14 d, especially under feed pans and along house edges, peaking at 26 d and then declining over the final 28 d. A life stage profile per flock was devised that consisted of the following: beetles emerge from the earth floor at the beginning of each flock, and females lay eggs, producing larvae that peak in numbers at 3 wk; after a further 3 to 4 wk, larvae leave litter to pupate in the earth floor, and beetles then emerge by the end of the flock time. Removing old litter from the brooder section at the end of a flock did not greatly reduce mealworm numbers over the subsequent flock, but it seemed to prevent numbers increasing, while an increase in numbers in the grow-out section was recorded after reusing litter. Areas under feed pans and along house edges accounted for 5% of the total house area, but approximately half the estimated total number of lesser mealworms in the broiler house occurred in these locations. The results of this study will be used to determine optimal deployment of site-specific treatments for lesser mealworm control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adoption of conservation tillage practices on Red Ferrosol soils in the inland Burnett area of south-east Queensland has been shown to reduce runoff and subsequent soil erosion. However, improved infiltration resulting from these measures has not improved crop performance and there are suggestions of increased loss of soil water via deep drainage. This paper reports data monitoring soil water under real and artificial rainfall events in commercial fields and long-term tillage experiments, and uses the data to explore the rate and mechanisms of deep drainage in this soil type. Soils were characterised by large drainable porosities (≥0.10 m3/m3) in all parts of the profile to depths of 1.50 m, with drainable porosity similar to available water content (AWC) at 0.25 and 0.75 m, but >60% higher than AWC at 1.50 m. Hydraulic conductivity immediately below the tilled layer in both continuously cropped soils and those after a ley pasture phase was shown to decline with increasing soil moisture content, although the rate of decline was much greater in continuously cropped soil. At moisture contents approaching the drained upper limit (pore water pressure = -100cm H2O), estimates of saturated hydraulic conductivity after a ley pasture were 3-5 times greater than in continuously cropped soil, suggesting much greater rates of deep drainage in the former when soils are moist. Hydraulic tensiometers and fringe capacitance sensors monitored during real and artificial rainfall events showed evidence of soils approaching saturation in the surface layers (top 0.30-0.40 m), but there was no evidence of soil moistures exceeding the drained upper limit (i.e. pore water pressures ≤ -100 cm H2O) in deeper layers. Recovery of applied soil water within the top 1.00-1.20 m of the profile during or immediately after rainfall events declined as the starting profile moisture content increased. These effects were consistent with very rapid rates of internal drainage. Sensors deeper in the profile were unable to detect this drainage due to either non-uniformity of conducting macropores (i.e. bypass flow) or unsaturated conductivities in deeper layers that far exceed the saturated hydraulic conductivity of the infiltration throttle at the bottom of the cultivated layer. Large increases in unsaturated hydraulic conductivities are likely with only small increases in water content above the drained upper limit. Further studies with drainage lysimeters and large banks of hydraulic tensiometers are planned to quantify drainage risk in these soil types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Salmonella enterica serotype Virchow is the most common cause of invasive nontyphoid salmonellosis in North Queensland, particularly in infants, but the zoonotic source is unknown. This study aimed at determining (i) the prevalence of the introduced Asian house gecko, Hemidactylus frenatus, in houses in North Queensland and (ii) whether they were a potential source of Salmonella Virchow. Methods: Asian house geckos were collected in a random survey of houses in Townsville, North Queensland. Gut contents underwent microbiological analysis within 2 h of removal using both direct plating and enrichment broth methods. Any organism found to be a presumptive Salmonella spp. was then sent to a reference lab for confirmation of genus/species, serotyping, and phage typing if indicated. Results: One hundred Asian house geckos were collected from 57 houses. Geckos were present in 100% of houses surveyed, and prevalence of Salmonella in large intestinal contents was 7% (95% confidence interval 2, 12%). Three serotypes were found: Virchow (phage type 8), Weltevreden, and an untypable subspecies 1 serotype 11:-:1,7. Conclusion: Since Salmonella Virchow (phage type 8) is associated with invasive disease, the introduced Asian house gecko may play a significant role in the epidemiology of sporadic salmonellosis in places invaded by these peridomestic reptiles. These results justify more detailed epidemiological studies on the role of the Asian house gecko in sporadic salmonellosis and development of evidence-based strategies to decrease this potential zoonotic hazard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian chicken meat industry requires effective agents for the management of lesser mealworm in broiler houses. The only two appropriate insecticides currently registered are cyfluthrin and spinosad, with gamma cyhalothrin being developed for registration. The industry requires the efficacy of cyfluthrin to be investigated, with progress and adoption of the latter two chemicals. Optimising the efficacy of each chemical and studying them singly and in rotation will, in addition to improving their efficacy, reduce overall insecticide use and improve their cost effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Irregular plagues of house mice cause high production losses in grain crops in Australia. If plagues can be forecast through broad-scale monitoring or model-based prediction, then mice can be proactively controlled by poison baiting. Aims. To predict mouse plagues in grain crops in Queensland and assess the value of broad-scale monitoring. Methods. Regular trapping of mice at the same sites on the Darling Downs in southern Queensland has been undertaken since 1974. This provides an index of abundance over time that can be related to rainfall, crop yield, winter temperature and past mouse abundance. Other sites have been trapped over a shorter time period elsewhere on the Darling Downs and in central Queensland, allowing a comparison of mouse population dynamics and cross-validation of models predicting mouse abundance. Key results. On the regularly trapped 32-km transect on the Darling Downs, damaging mouse densities occur in 50% of years and a plague in 25% of years, with no detectable increase in mean monthly mouse abundance over the past 35 years. High mouse abundance on this transect is not consistently matched by high abundance in the broader area. Annual maximum mouse abundance in autumn–winter can be predicted (R2 = 57%) from spring mouse abundance and autumn–winter rainfall in the previous year. In central Queensland, mouse dynamics contrast with those on the Darling Downs and lack the distinct annual cycle, with peak abundance occurring in any month outside early spring.Onaverage, damaging mouse densities occur in 1 in 3 years and a plague occurs in 1 in 7 years. The dynamics of mouse populations on two transects ~70 km apart were rarely synchronous. Autumn–winter rainfall can indicate mouse abundance in some seasons (R2 = ~52%). Conclusion. Early warning of mouse plague formation in Queensland grain crops from regional models should trigger farm-based monitoring. This can be incorporated with rainfall into a simple model predicting future abundance that will determine any need for mouse control. Implications. A model-based warning of a possible mouse plague can highlight the need for local monitoring of mouse activity, which in turn could trigger poison baiting to prevent further mouse build-up.