9 resultados para Doherty, Kenneth
em eResearch Archive - Queensland Department of Agriculture
Resumo:
It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize (Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rain fed and irrigated followed by rain fed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.
Resumo:
The Great Barrier Reef is a unique World Heritage Area of national and international significance. As a multiple use Marine Park, activities such as fishing and tourism occur along with conservation goals. Managers need information on habitats and biodiversity distribution and risks to ensure these activities are conducted sustainably. However, while the coral reefs have been relatively well studied, less was known about the deeper seabed in the region. From 2003 to 2006, the GBR Seabed Biodiversity Project has mapped habitats and their associated biodiversity across the length and breadth of the Marine Park to provide information that will help managers with conservation planning and to assess whether fisheries are ecologically sustainable, as required by environmental protection legislation (e.g. EPBC Act 1999). Holistic information on the biodiversity of the seabed was acquired by visiting almost 1,500 sites, representing a full range of known environments, during 10 month-long voyages on two vessels and deploying several types of devices such as: towed video and digital cameras, baited remote underwater video stations (BRUVS), a digital echo-sounder, an epibenthic sled and a research trawl to collect samples for more detailed data about plants, invertebrates and fishes on the seabed. Data were collected and processed from >600 km of towed video and almost 100,000 photos, 1150 BRUVS videos, ~140 GB of digital echograms, and from sorting and identification of ~14,000 benthic samples, ~4,000 seabed fish samples, and ~1,200 sediment samples.
Resumo:
Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.
Resumo:
Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment. © 2012 American Society of Agricultural and Biological Engineers.
Resumo:
Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond. Keating et al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands. This paper updates the earlier work by Keating et al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a “next generation” framework with improved features and capabilities that allow its use in many diverse topics.
Resumo:
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from −5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from −5 to −30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.
Resumo:
Climatic variability in dryland production environments (E) generates variable yield and crop production risks. Optimal combinations of genotype (G) and management (M) depend strongly on E and thus vary among sites and seasons. Traditional crop improvement seeks broadly adapted genotypes to give best average performance under a standard management regime across the entire production region, with some subsequent manipulation of management regionally in response to average local environmental conditions. This process does not search the full spectrum of potential G × M × E combinations forming the adaptation landscape. Here we examine the potential value (relative to the conventional, broad adaptation approach) of exploiting specific adaptation arising from G × M × E. We present an in-silico analysis for sorghum production in Australia using the APSIM sorghum model. Crop design (G × M) is optimised for subsets of locations within the production region (specific adaptation) and is compared with the optimum G across all environments with locally modified M (broad adaptation). We find that geographic subregions that have frequencies of major environment types substantially different from that for the entire production region show greatest advantage for specific adaptation. Although the specific adaptation approach confers yield and production risk advantages at industry scale, even greater benefits should be achievable with better predictors of environment-type likelihood than that conferred by location alone.