4 resultados para Dispersed City
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Eve White, Anna Barnes and Gabrielle Vivian-Smith recently published their paper 'Dispersal and establishment of bird-dispersed weed and native species in early successional subtropical habitats' in Proceedings of the 16th Australian Weeds Conference. Eve also presented this paper at the conference. They investigated patterns of dispersal and establishment of bird-dispersed weeds and native species in early successional habitats in northern New South Wales. Patterns varied among growth forms, between native species and weeds, and among vegetation types. Their results indicated that the number of seeds dropped by birds is not necessarily a good predictor of recruitment and that post-dispersal factors, such as microsite characteristics, may be more important influences on seedling recruitment. This knowledge will assist with designing management strategies for bird-dispersed weeds in natural areas.
Resumo:
Invasive bird-dispersed plants often share the same suite of dispersers as co-occurring native species, resulting in a complex management issue. Integrated management strategies could incorporate manipulation of dispersal or establishment processes. To improve our understanding of these processes, we quantified seed rain, recruit and seed bank density, and species richness for bird-dispersed invasive and native species in three early successional subtropical habitats in eastern Australia: tree regrowth, shrub regrowth and native restoration plantings. We investigated the effects of environmental factors (leaf area index (LAI), distance to edge, herbaceous ground cover and distance to nearest neighbour) on seed rain, seed bank and recruit abundance. Propagule availability was not always a good predictor of recruitment. For instance, although native tree seed rain density was similar, and species richness was higher, in native plantings, compared with tree regrowth, recruit density and species richness were lower. Native plantings also received lower densities of invasive tree seed rain than did tree regrowth habitats, but supported a similar density of invasive tree recruits. Invasive shrub seed rain was recorded in highest densities in shrub regrowth sites, but recruit density was similar between habitats. We discuss the role of microsite characteristics in influencing post-dispersal processes and recruit composition, and suggest ways of manipulating these processes as part of an integrated management strategy for bird-dispersed weeds in natural areas.
Resumo:
Aim: Birds play a major role in the dispersal of seeds of many fleshy-fruited invasive plants. The fruits that birds choose to consume are influenced by fruit traits. However, little is known of how the traits of invasive plant fruits contribute to invasiveness or to their use by frugivores. We aim to gain a greater understanding of these relationships to improve invasive plant management. Location: South-east Queensland, Australia. Methods: We measure a variety of fruit morphology, pulp nutrient and phenology traits of a suite of bird-dispersed alien plants. Frugivore richness of these aliens was derived from the literature. Using regressions and multivariate methods, we investigate relationships between fruit traits, frugivore richness and invasiveness. Results: Plant invasiveness was negatively correlated to fruit size, and all highly invasive species had quite similar fruit morphology [smaller fruits, seeds of intermediate size and few (<10) seeds per fruit]. Lower pulp water was the only pulp nutrient trait associated with invasiveness. There were strong positive relationships between the diversity of bird frugivores and plant invasiveness, and in the diversity of bird frugivores in the study region and another part of the plants' alien range. Main conclusions: Our results suggest that weed risk assessments (WRA) and predictions of invasive success for bird-dispersed plants can be improved. Scoring criteria for WRA regarding fruit size would need to be system-specific, depending on the fruit-processing capabilities of local frugivores. Frugivore richness could be quantified in the plant's natural range, its invasive range elsewhere, or predictions made based on functionally similar fruits.
Resumo:
Vertebrates play a major role in dispersing seeds of fleshy-fruited alien plants. However, we know little of how the traits of alien fleshy fruits compare with indigenous fleshy fruits, and how these differences might contribute to invasion success. In this study, we characterised up to 38 fruit morphology, pulp nutrient and phenology traits of an assemblage of 34 vertebrate-dispersed alien species in south-eastern Queensland, Australia. Most alien fruits were small (81%\15 mm in mean width), and had watery fruit pulps that were high in sugars and low in nitrogen and lipids. When compared to indigenous species, alien fruits had significantly smaller seeds. Further, alien fruit pulps contained more sugar and more variable (and probably greater) nitrogen per pulp wet weight, and species tended to have longer fruiting seasons than indigenous species. Our analyses suggest that fruit traits could be important in determining invasiveness and could be used to improve pre- and post-border weed risk assessment.