15 resultados para Direct solutions
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Species biology drives the frequency, duration and extent of survey and control activities in weed eradication programs. Researching the key biological characters can be difficult when plants occur at limited locations and are controlled immediately by field crews who are dedicated to preventing reproduction. Within the National Four Tropical Weeds Eradication Program and the former National Siam Weed Eradication Program, key information needed by the eradication teams has been obtained through a combination of field, glasshouse and laboratory studies without jeopardising the eradication objective. Information gained on seed longevity, age to reproductive maturity, dispersal and control options has been used to direct survey and control activities. Planned and opportunistic data collections will continue to provide biological information to refine eradication activities.
Resumo:
We evaluated the role of the larval parasitoid, Diadegma semiclausum Hellén (Hymenoptera: Ichneumonidae), in controlling Plutella xylostella (L.) (Lepidoptera: Plutellidae) by cage exclusion experiments and direct field observation during the winter season in southern Queensland, Australia. The cage exclusion experiment involved uncaged, open cage and closed cage treatments. A higher percentage (54-83%) of P. xylostella larvae on sentinel plants were lost in the uncaged treatment than the closed (4-9%) or open cage treatments (11-29%). Of the larvae that remained in the uncaged treatment, 72-94% were parasitized by D. semiclausum, much higher than that in the open cage treatment (8-37% in first trial, and 38-63% in second trial). Direct observations showed a significant aggregation response of the field D. semiclausum populations to high host density plants in an experimental plot and to high host density plots that were artificially set-up near to the parasitoid source fields. The degree of aggregation varied in response to habitat quality of the parasitoid source field and scales of the manipulated host patches. As a result, density-dependence in the pattern of parasitism may depend on the relative degree of aggregation of the parasitoid population at a particular scale. A high degree of aggregation seems to be necessary to generate density-dependent parasitism by D. semiclausum. Integration of the cage exclusion experiment and direct observation demonstrated the active and dominant role of this parasitoid in controlling P. xylostella in the winter season. A biologically based IPM strategy, which incorporates the use of D. semiclausum with Bt, is suggested for the management of P. xylostella in seasons or regions with a mild temperature.
Resumo:
Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5-6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.
Resumo:
A Campylobacter fetus subsp. venerealis-specific 5' Taq nuclease PCR assay using a 3' minor groove binder-DNA probe (TaqMan MGB) was developed based on a subspecies-specific fragment of unknown identity (S. Hum, K. Quinn, J. Brunner, and S. L. On, Aust. Vet. J. 75:827-831, 1997). The assay specifically detected four C. fetus subsp. venerealis strains with no observed cross-reaction with C. fetus subsp. fetus-related Campylobacter species or other bovine venereal microflora. The 5' Taq nuclease assay detected approximately one single cell compared to 100 and 10 cells in the conventional PCR assay and 2,500 and 25,000 cells from selective culture from inoculated smegma and mucus, respectively. The respective detection limits following the enrichments from smegma and mucus were 5,000 and 50 cells/inoculum for the conventional PCR compared to 500 and 50 cells/inoculum for the 5' Taq nuclease assay. Field sampling confirmed the sensitivity and the specificity of the 5' Taq nuclease assay by detecting an additional 40 bulls that were not detected by culture. Urine-inoculated samples demonstrated comparable detection of C. fetus subsp. venerealis by both culture and the 5' Taq nuclease assay; however, urine was found to be less effective than smegma for bull sampling. Three infected bulls were tested repetitively to compare sampling tools, and the bull rasper proved to be the most suitable, as evidenced by the improved ease of specimen collection and the consistent detection of higher levels of C. fetus subsp. venerealis. The 5' Taq nuclease assay demonstrates a statistically significant association with culture (2 = 29.8; P < 0.001) and significant improvements for the detection of C. fetus subsp. venerealis-infected animals from crude clinical extracts following prolonged transport.
Resumo:
The main aim of this project is to develop variety management packages to help tailor commercial malt and feed barley production in the Northern GRDC Region to commercial malt and feed barley specifications. Field trials are designed to give information.
Resumo:
The successful inclusion of break crops into the Burdekin sugar farming system will allow growers to diversify and capitalise on alternate crop income sources, particularly during cyclical downturns in sugar price. Secondly if cane productivity is improved through the inclusion of break crops, millers and growers stand to gain additional economic benefit compared to the current sugarcane monoculture.
Resumo:
Producing management packages for new northern barley varieties. Evaluating silage barley varieties.
Resumo:
Root disease causes about $503 million in losses annually to Australia's wheat and barley industries. Because of these large losses and in many cases the difficulty in reducing these losses through breeding or management, root diseases are candidates for solutions through genetic modification (GM). Through an extensive review of the scientific literature and patents, a range of approaches to GM solutions to root diseases are critically discussed. Given the high cost of regulatory approval for GM crops and a complex intellectual property (IP) landscape, it is likely that research in this area will be done in collaboration with international partners.
Resumo:
Developing best practices in Central Queensland to (a) manage difficult to control weeds; (b) improve herbicide efficacy under adverse conditions, and (c) manage weeds in wide-row crop systems.
Resumo:
Current understanding is that high planting density has the potential to suppress weeds and crop-weed interactions can be exploited by adjusting fertilizer rates. We hypothesized that (a) high planting density can be used to suppress Rottboellia cochinchinensis growth and (b) rice competitiveness against this weed can be enhanced by increasing nitrogen (N) rates. We tested these hypotheses by growing R. cochinchinensis alone and in competition with four rice planting densities (0, 100, 200, and 400 plants m-2) at four N rates (0, 50, 100, and 150 kg ha-1). At 56 days after sowing (DAS), R. cochinchinensis plant height decreased by 27-50 %, tiller number by 55-76 %, leaf number by 68-84 %, leaf area by 70-83 %, leaf biomass by 26-90 %, and inflorescence biomass by 60-84 %, with rice densities ranging from 100 to 400 plants m-2. All these parameters increased with an increase in N rate. Without the addition of N, R. cochinchinensis plants were 174 % taller than rice; whereas, with added N, they were 233 % taller. Added N favored more weed biomass production relative to rice. R. cochinchinensis grew taller than rice (at all N rates) to avoid shade, which suggests that it is a "shade-avoiding" plant. R. cochinchinensis showed this ability to reduce the effect of rice interference through increased leaf weight ratio, specific stem length, and decreased root-shoot weight ratio. This weed is more responsive to N fertilizer than rice. Therefore, farmers should give special consideration to the application timing of N fertilizer when more N-responsive weeds are present in their field. Results suggest that the growth and seed production of R. cochinchinensis can be decreased considerably by increasing rice density to 400 plants m-2. There is a need to integrate different weed control measures to achieve complete control of this noxious weed.
Resumo:
The cropping region of northern Australia has a diverse range of cropping systems and weed flora. A fallow phase is commonly required between crops to enable the accumulation of stored soil water in these farming systems dominated by reduced tillage. During the fallow phase, weed control is important and is heavily reliant on herbicides. The most commonly used herbicide has been glyphosate. As a result of over-reliance on glyphosate, there are now seven confirmed glyphosate-resistant weeds and several glyphosate-tolerant species common in the region. As a result, the control of summer fallow weeds is become more complex. This paper outlines project work investigating improved weed control for summer fallows in the northern cropping region. Areas of research include weed ecology, chemical and non-chemical tactics, glyphosate resistance and resistance surveys. The project also has an economic and extension component. As a result of our research we have a better understanding of the ecology of major northern weeds and spread of glyphosate resistance in the region. We have identified and defined alternative herbicide and non-chemical approaches for the effective control of summer fallow weeds and have extended our research effectively to industry.
Resumo:
The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.
Resumo:
Rice production symbolizes the single largest land use for food production on the Earth. The significance of this cereal as a source of energy and income seems overwhelming for millions of people in Asia, representing 90% of global rice production and consumption. Estimates indicate that the burgeoning population will need 25% more rice by 2025 than today's consumption. As the demand for rice is increasing, its production in Asia is threatened by a dwindling natural resource base, socioeconomic limitations, and uncertainty of climatic optima. Transplanting in puddled soil with continuous flooding is a common method of rice crop establishment in Asia. There is a dire need to look for rice production technologies that not only cope with existing limitations of transplanted rice but also are viable, economical, and secure for future food demand.Direct seeding of rice has evolved as a potential alternative to the current detrimental practice of puddling and nursery transplanting. The associated benefits include higher water productivity, less labor and energy inputs, less methane emissions, elimination of time and edaphic conflicts in the rice-wheat cropping system, and early crop maturity. Realization of the yield potential and sustainability of this resource-conserving rice production technique lies primarily in sustainable weed management, since weeds have been recognized as the single largest biological constraint in direct-seeded rice (DSR). Weed competition can reduce DSR yield by 30-80% and even complete crop failure can occur under specific conditions. Understanding the dynamics and outcomes of weed-crop competition in DSR requires sound knowledge of weed ecology, besides production factors that influence both rice and weeds, as well as their association. Successful adoption of direct seeding at the farmers' level in Asia will largely depend on whether farmers can control weeds and prevent shifts in weed populations from intractable weeds to more difficult-to-control weeds as a consequence of direct seeding. Sustainable weed management in DSR comprises all the factors that give DSR a competitive edge over weeds regarding acquisition and use of growth resources. This warrants the need to integrate various cultural practices with weed control measures in order to broaden the spectrum of activity against weed flora. A weed control program focusing entirely on herbicides is no longer ecologically sound, economically feasible, and effective against diverse weed flora and may result in the evolution of herbicide-resistant weed biotypes. Rotation of herbicides with contrasting modes of action in conjunction with cultural measures such as the use of weed-competitive rice cultivars, sowing time, stale seedbed technique, seeding rate, crop row spacing, fertilizer and water inputs and their application method/timing, and manual and mechanical hoeing can prove more effective and need to be optimized keeping in view the type and intensity of weed infestation. This chapter tries to unravel the dynamics of weed-crop competition in DSR. Technological issues, limitations associated with DSR, and opportunities to combat the weed menace are also discussed as a pragmatic approach for sustainable DSR production. A realistic approach to secure yield targets against weed competition will combine the abovementioned strategies and tactics in a coordinated manner. This chapter further suggests the need of multifaceted and interdisciplinary research into ecologically based weed management, as DSR seems inevitable in the near future.
Resumo:
Dry direct-seeded rice (DSR) faces with complex weed problems particularly when farmers missed pre-emergence herbicide applications. Thus, an effective and strategic weed control in DSR is often required with available options of post-emergence herbicides. In such situations, tank mixtures of herbicides may provide broad spectrum weed control in DSR. Field experiments were conducted in the wet seasons of 2013 and 2014 to study weed control in response to tank mixtures of herbicides currently applied in DSR in South Asia. Results revealed that the tank mixtures of the currently available herbicides (azimsulfuron plus bispyribac or fenoxaprop, bispyribac plus fenoxaprop, and azimsulfuron plus bispyribac plus fenoxaprop; all applied as post-emergence) rarely resulted in antagonistic effects. Highest weed control efficiency (∼98%) was recorded with the tank mixture of azimsulfuron plus bispyribac plus fenoxaprop during both the years. This treatment also produced highest grain yield (7.2 t ha−1 in 2013 and 7.9 t ha−1in 2014), which was similar to the grain yield in the plots treated with the tank mix of azimsulfuron plus fenoxaprop, pendimethalin (applied as pre-emergence) followed by (fb) bispyribac, pendimethalin fb fenoxaprop, as well as pendimethalin fb azimsulfuron. Plots treated with the post-emergence application of single herbicide (i.e., azimsulfuron, bispyribac, or fenoxaprop) had lower grain yield (3.0–5.2 t ha−1 in 2013 to 3.5–6.1 t ha−1in 2014) than all the sequential herbicide treatments and tank mixtures (azimsulfuron plus fenoxaprop and azimsulfuron plus bispyribac), owing to a broad spectrum weed control. The study suggested that if farmers missed the pre-emergence application of herbicides (e.g., pendimethalin) due to erratic rains or due to other reasons, good weed control and high yield can still be obtained with tank mix applications of azimsulfuron plus fenoxaprop or azimsulfuron plus bispyribac plus fenoxaprop in DSR.