3 resultados para Diffractive optics
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Recent decreases in costs, and improvements in performance, of silicon array detectors open a range of potential applications of relevance to plant physiologists, associated with spectral analysis in the visible and short-wave near infra-red (far-red) spectrum. The performance characteristics of three commercially available ‘miniature’ spectrometers based on silicon array detectors operating in the 650–1050-nm spectral region (MMS1 from Zeiss, S2000 from Ocean Optics, and FICS from Oriel, operated with a Larry detector) were compared with respect to the application of non-invasive prediction of sugar content of fruit using near infra-red spectroscopy (NIRS). The FICS–Larry gave the best wavelength resolution; however, the narrow slit and small pixel size of the charge-coupled device detector resulted in a very low sensitivity, and this instrumentation was not considered further. Wavelength resolution was poor with the MMS1 relative to the S2000 (e.g. full width at half maximum of the 912 nm Hg peak, 13 and 2 nm for the MMS1 and S2000, respectively), but the large pixel height of the array used in the MMS1 gave it sensitivity comparable to the S2000. The signal-to-signal standard error ratio of spectra was greater by an order of magnitude with the MMS1, relative to the S2000, at both near saturation and low light levels. Calibrations were developed using reflectance spectra of filter paper soaked in range of concentrations (0–20% w/v) of sucrose, using a modified partial least squares procedure. Calibrations developed with the MMS1 were superior to those developed using the S2000 (e.g. coefficient of correlation of 0.90 and 0.62, and standard error of cross-validation of 1.9 and 5.4%, respectively), indicating the importance of high signal to noise ratio over wavelength resolution to calibration accuracy. The design of a bench top assembly using the MMS1 for the non-invasive assessment of mesocarp sugar content of (intact) melon fruit is reported in terms of light source and angle between detector and light source, and optimisation of math treatment (derivative condition and smoothing function).
Resumo:
Spectral data were collected of intact and ground kernels using 3 instruments (using Si-PbS, Si, and InGaAs detectors), operating over different areas of the spectrum (between 400 and 2500 nm) and employing transmittance, interactance, and reflectance sample presentation strategies. Kernels were assessed on the basis of oil and water content, and with respect to the defect categories of insect damage, rancidity, discoloration, mould growth, germination, and decomposition. Predictive model performance statistics for oil content models were acceptable on all instruments (R2 > 0.98; RMSECV < 2.5%, which is similar to reference analysis error), although that for the instrument employing reflectance optics was inferior to models developed for the instruments employing transmission optics. The spectral positions for calibration coefficients were consistent with absorbance due to the third overtones of CH2 stretching. Calibration models for moisture content in ground samples were acceptable on all instruments (R2 > 0.97; RMSECV < 0.2%), whereas calibration models for intact kernels were relatively poor. Calibration coefficients were more highly weighted around 1360, 740 and 840 nm, consistent with absorbance due to overtones of O-H stretching and combination. Intact kernels with brown centres or rancidity could be discriminated from each other and from sound kernels using principal component analysis. Part kernels affected by insect damage, discoloration, mould growth, germination, and decomposition could be discriminated from sound kernels. However, discrimination among these defect categories was not distinct and could not be validated on an independent set. It is concluded that there is good potential for a low cost Si photodiode array instrument to be employed to identify some quality defects of intact macadamia kernels and to quantify oil and moisture content of kernels in the process laboratory and for oil content in-line. Further work is required to examine the robustness of predictive models across different populations, including growing districts, cultivars and times of harvest.
Resumo:
Predictive models based on near infra-red spectroscopy for the assessment of fruit internal quality attributes must exhibit a degree of robustness across the parameters of variety, district and time to be of practical use in fruit grading. At the time this thesis was initiated, while there were a number of published reports on the development of near infra-red based calibration models for the assessment of internal quality attributes of intact fruit, there were no reports of the reliability ("robustness") of such models across time, cultivars or growing regions. As existing published reports varied in instrumentation employed, a re-analysis of existing data was not possible. An instrument platform, based on partial transmittance optics, a halogen light source and (Zeiss MMS 1) detector operating in the short wavelength near infra-red region was developed for use in the assessment of intact fruit. This platform was used to assess populations of macadamia kernels, melons and mandarin fruit for total soluble solids, dry matter and oil concentration. Calibration procedures were optimised and robustness assessed across growing areas, time of harvest, season and variety. In general, global modified partial least squares regression (MPLS) calibration models based on derivatised absorbance data were better than either multiple linear regression or `local' MPLS models in the prediction of independent validation populations . Robustness was most affected by growing season, relative to the growing district or variety . Various calibration updating procedures were evaluated in terms of calibration robustness. Random selection of samples from the validation population for addition to the calibration population was equivalent to or better than other methods of sample addition (methods based on the Mahalanobis distance of samples from either the centroid of the population or neighbourhood samples). In these exercises the global Mahalanobis distance (GH) was calculated using the scores and loadings from the calibration population on the independent validation population. In practice, it is recommended that model predictive performance be monitored in terms of predicted sample GH, with model updating using as few as 10 samples from the new population undertaken when the average GH value exceeds 1 .0 .