4 resultados para Dianne Hoff
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Cat's claw creeper, Dolichandra unguis-cati (L.) L.G. Lohman (syn: Macfadyena unguis-cati (L.) A.H. Gentry) (Bignoniaceae), a major environmental weed in Queensland and New South Wales, is a Weed of National Significance and an approved target for biological control. A leaf-mining jewel beetle, Hylaeogena jureceki Obenberger (Coleoptera: Buprestidae), first collected in 2002 from D. unguis-cati in Brazil and Argentina, was imported from South Africa into a quarantine facility in Brisbane in 2009 for host-specificity testing. H. jureceki adults chew holes in leaves and lay eggs on leaf margins and the emerging larvae mine within the leaves of D. unguis-cati. The generation time (egg to adult) of H. jureceki under quarantine conditions was 55.4 ± 0.2 days. Host-specificity trials conducted in Australia on 38 plant species from 11 families supplement and support South African studies which indicated that H. jureceki is highly host-specific and does not pose a risk to any non-target plant species in Australia. In no-choice tests, adults survived significantly longer (>32 weeks) on D. unguis-cati than on non-target test plant species (<3 weeks). Oviposition occurred on D. unguis-cati and one non-target test plant species, Citharexylum spinosum (Verbenaceae), but no larval development occurred on the latter species. In choice tests involving D. unguis-cati, C. spinosum and Avicennia marina (Avicenniaceae), feeding and oviposition were evident only on D. unguis-cati. The insect was approved for field release in Australia in May 2012.
Resumo:
The leaf-tying moth Hypocosmia pyrochroma Jones (Lepidoptera: Pyralidae), a native of sub tropical South America, has been introduced as a biological control agent for cat’s claw creeper, Dolichandra unguis-cati (L.) Lohman (Bignoniaceae), in Australia and South Africa. So far there has been no evidence of its field establishment in either country. A narrow temperature tolerance is a potential limiting factor for the establishment of weed biological control insects in novel habitats. In this study, we evaluated the effect of seven constant temperatures (12–40 °C) on the survival and development of H. pyrochroma in temperature-controlled cabinets. Temperatures between 20 and 30 °C were the most favorable for adult survival, oviposition, egg hatching, and larval and pupal development. Adult survival (12–40 °C) and egg development (15–35 °C) showed tolerance for wider temperature ranges than oviposition, and larval and pupal development, which were all negatively affected by both high (>30 °C) and low (<20 °C) temperatures. The degree-day (DD) requirement to complete a generation was estimated as 877 above a threshold temperature of 12 °C. Based on DD requirements and an obligatory winter diapause of pupae from mid-autumn to mid-spring, the potential number of generations (egg to adult) the leaf-tying moth can complete in a year in Australia or South Africa range from one to three. A climate-matching model predicted that the inland regions of both Australia and South Africa are less favorable for H. pyrochroma than the coastal areas. The study suggested that H. pyrochroma is more likely to establish in the coastal areas of Australia where most of the cat’s claw creeper infestations occur, than in South Africa where most of the cat’s claw creeper infestations are inland.
Resumo:
The leaf-tying moth Hypocosmia pyrochroma Jones (Lepidoptera: Pyralidae), a native of sub tropical South America, has been introduced as a biological control agent for cat’s claw creeper, Dolichandra unguis-cati (L.) Lohman (Bignoniaceae), in Australia and South Africa. So far there has been no evidence of its field establishment in either country. A narrow temperature tolerance is a potential limiting factor for the establishment of weed biological control insects in novel habitats. In this study, we evaluated the effect of seven constant temperatures (12–40 °C) on the survival and development of H. pyrochroma in temperature-controlled cabinets. Temperatures between 20 and 30 °C were the most favorable for adult survival, oviposition, egg hatching, and larval and pupal development. Adult survival (12–40 °C) and egg development (15–35 °C) showed tolerance for wider temperature ranges than oviposition, and larval and pupal development, which were all negatively affected by both high (>30 °C) and low (<20 °C) temperatures. The degree-day (DD) requirement to complete a generation was estimated as 877 above a threshold temperature of 12 °C. Based on DD requirements and an obligatory winter diapause of pupae from mid-autumn to mid-spring, the potential number of generations (egg to adult) the leaf-tying moth can complete in a year in Australia or South Africa range from one to three. A climate-matching model predicted that the inland regions of both Australia and South Africa are less favorable for H. pyrochroma than the coastal areas. The study suggested that H. pyrochroma is more likely to establish in the coastal areas of Australia where most of the cat’s claw creeper infestations occur, than in South Africa where most of the cat’s claw creeper infestations are inland.
Resumo:
Bellyache bush (Jatropha gossypifolia L. (Euphorbiaceae)) is a serious weed of dry tropical regions of northern Australia, with the potential to spread over much of the tropical savannah. It is well adapted to the harsh conditions of the dry tropics, defoliating during the dry season and rapidly producing new leaves with the onset of the wet season. In this study we examined the growth and biomass allocation of the three Queensland biotypes Queensland Green, Queensland Bronze and Queensland Purple) under three water regimes (water-stressed, weekly watering and constant water). Bellyache bush plants have a high capacity to adjust to water stress. The impact of water stress was consistent across the three biotypes. Water stressed plants produced significantly less biomass compared to plants with constant water, increased their biomass allocation to the roots and increased biomass allocation to leaf material. Queensland Purple plants allocated more resources to roots and less to shoots than Queensland Green (Queensland Bronze being intermediate). Queensland Green produced less root biomass than the other two biotypes.