10 resultados para Diagnostic Reasoning
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Thirty-seven surface (0-0.10 or 0-0.20 m) soils covering a wide range of soil types (16 Vertosols, 6 Ferrosols, 6 Dermosols, 4 Hydrosols, 2 Kandosols, 1 Sodosol, 1 Rudosol, and 1 Chromosol) were exhaustively cropped in 2 glasshouse experiments. The test species were Panicum maximum cv. Green Panic in Experiment A and Avena sativa cv. Barcoo in Experiment B. Successive forage harvests were taken until the plants could no longer grow in most soils because of severe potassium (K) deficiency. Soil samples were taken prior to cropping and after the final harvest in both experiments, and also after the initial harvest in Experiment B. Samples were analysed for solution K, exchangeable K (Exch K), tetraphenyl borate extractable K for extraction periods of 15 min (TBK15) and 60 min (TBK60), and boiling nitric acid extractable K (Nitric K). Inter-correlations between the initial levels of the various soil K parameters indicated that the following pools were in sequential equilibrium: solution K, Exch K, fast release fixed K [estimated as (TBK15-Exch K)], and slow release fixed K [estimated as (TBK60-TBK15)]. Structural K [estimated as (Nitric K-TBK60)] was not correlated with any of the other pools. However, following exhaustive drawdown of soil K by cropping, structural K became correlated with solution K, suggesting dissolution of K minerals when solution K was low. The change in the various K pools following cropping was correlated with K uptake at Harvest 1 ( Experiment B only) and cumulative K uptake ( both experiments). The change in Exch K for 30 soils was linearly related to cumulative K uptake (r = 0.98), although on average, K uptake was 35% higher than the change in Exch K. For the remaining 7 soils, K uptake considerably exceeded the change in Exch K. However, the changes in TBK15 and TBK60 were both highly linearly correlated with K uptake across all soils (r = 0.95 and 0.98, respectively). The slopes of the regression lines were not significantly different from unity, and the y-axis intercepts were very small. These results indicate that the plant is removing K from the TBK pool. Although the change in Exch K did not consistently equate with K uptake across all soils, initial Exch K was highly correlated with K uptake (r = 0.99) if one Vertosol was omitted. Exchangeable K is therefore a satisfactory diagnostic indicator of soil K status for the current crop. However, the change in Exch K following K uptake is soil-dependent, and many soils with large amounts of TBK relative to Exch K were able to buffer changes in Exch K. These soils tended to be Vertosols occurring on floodplains. In contrast, 5 soils (a Dermosol, a Rudosol, a Kandosol, and 2 Hydrosols) with large amounts of TBK did not buffer decreases in Exch K caused by K uptake, indicating that the TBK pool in these soils was unavailable to plants under the conditions of these experiments. It is likely that K fertiliser recommendations will need to take account of whether the soil has TBK reserves, and the availability of these reserves, when deciding rates required to raise exchangeable K status to adequate levels.
Resumo:
A 300-strong Angus-Brahman cattle herd near Springsure, central Queensland, was being fed Acacia shirleyi (lancewood) browse during drought and crossed a 5-hectare, previously burnt area with an almost pure growth of Dysphania glomulifera subspecies glomulifera (red crumbweed) on their way to drinking water. Forty cows died of cyanide poisoning over 2 days before further access to the plant was prevented. A digital image of a plant specimen made on a flat-bed scanner and transmitted by email was used to identify D glomulifera. Specific advice on the plant's poisonous properties and management of the case was then provided by email within 2 hours of an initial telephone call by the field veterinarian to the laboratory some 600 km away. The conventional method using physical transport of a pressed dried plant specimen to confirm the identification took 5 days. D glomulifera was identified in the rumen of one of two cows necropsied. The cyanogenic potential of D glomulifera measured 4 days after collection from the site of cattle deaths was 18,600 mg HCN/kg in dry matter. The lethal dose of D glomulifera for a 420 kg cow was estimated as 150 to 190 g wet weight. The plant also contained 4.8% KNO3 equivalent in dry matter, but nitrate-nitrite poisoning was not involved in the deaths.
Resumo:
Enhanced diagnostic platforms for Post Entry Quarantine (PEQ) and market access (Phase 1).
Resumo:
Development of a national diagnostic database for Emergency Plant Pests which will be web-accessible.
Resumo:
Develop and implement a diagnostic framework designed to help advisors and farmers identify the causes of poor crop performance and implement appropriate remedial measures.
Resumo:
Accurate identification of pests is essential for practically all aspects of agricultural development and is critical to the operations of biosecurity that safeguard agricultural integrity and facilitate trade. Diagnostic capability is at the forefront of and complementary to, activities such as border protection, incursion management, surveillance and pest and disease certification. The efficiency of a biosecurity system therefore depends largely on the feedback between these activities and diagnostics. Australian scientists will train Thai scientists in diagnostics and surveillance to provide the Thai DOA with skills that will aid in the development of a Thai Diagnostic Network. The skills will be taught using a range of pests, including some which have particular biosecurity importance for both Australia and Thailand such as citrus canker, potato viruses and fruit flies.
Resumo:
Development of molecular markers for rapid diagnosis of phosphine resistance in insects.
Resumo:
Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide) gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD) gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T.castaneum and R.dominica with strong resistance was identified as P45S in T.castaneum and P49S in R.dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R) allele and allowed inference of genotypes with that allele. Seven populations of T.castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population.
Resumo:
This project describes how Streptococcus agalactiae can be transmitted experimentally in Queensland grouper. The implications of this research furthers the relatedness between Australian S. agalactiae strains from animals and humans. Additionally, this research has developed diagnostic tools for Australian State Veterinary Laboratories and Universities, which will assist in State and National aquatic animal disease detection, surveillance, disease monitoring and reporting