10 resultados para Deficient
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Supplements are often fed to ruminants in extensive grazing situations to provide minerals and nitrogen likely to be deficient in pasture. However a large proportion of animals offered such supplements may not consume any supplement, while among consumer animals the variability in supplement intake may be high (Wheeler et al., 1980; Dixon et al., 1998). An experiment examined the distribution of intake of a molasses-based supplement containing phosphorus and urea in a breeder herd. A herd of mixed-age breeder cows, calves, heifers and bulls were offered ad libitum a molasses-based supplement containing 13% urea and 17% phosphoric acid. After 2 weeks lithium-labelled supplement (2 mg Li/kg LW) was offered on one day to measure individual intakes of supplement. The molasses was offered in three 560 mm diameter feeders placed together near the water point.
Resumo:
Loose mineral mix (LMM) supplements are often fed to ruminants in extensive grazing situations to provide minerals and nitrogen likely to be deficient in pasture. However a large proportion of animals offered such supplements may not consume any supplement, while among consumer animals the variability in supplement intake may be high (Wheeler et al., 1980; Dixon et al., 1996). Two experiments examined the distribution of intake of LMM supplements offered to heifers grazing in mob and paddock sizes representative of commercial cattle properties.
Resumo:
In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.
Resumo:
The effects of recycled water (effluent) on 8 tropical grasses growing in 100-L bags of sand were studied in Murrumba Downs, just north of Brisbane in southern Queensland (27.4°S, 153.1°E). The species used were: Axonopus compressus (broad-leaf carpetgrass), Cynodon dactylon (bermudagrass 'Winter Green') and C. dactylon x C. transvaalensis hybrid ('Tifgreen'), Digitaria didactyla (Queensland blue couch), Paspalum notatum (bahiagrass '38824'), Stenotaphrum secundatum (buffalograss 'Palmetto'), Eremochloa ophiuroides (centipedegrass 'Centec') and Zoysia japonica (zoysiagrass 'ZT-11'). From May 2002 to June 2003, control plots were irrigated with potable water and fertilised monthly. Plots irrigated with effluent received no fertiliser from May to August 2002 (deficient phase), complete fertilisers at control rates from September to December 2002 (recovery phase) and nitrogen (N) only at control rates from January to June 2003 (supplementary phase). In October 2002, the average shoot weight of plants from the effluent plots was 4% of that from potable plots, with centipedegrass less affected than the other species (relative growth of 20%). Shoot N concentrations declined by 40% in the effluent plots from May to August 2002 (1.8 ± 0.1%) along with phosphorus (P, 0.46 ± 0.02%), potassium (K, 1.6 ± 0.2%), sulfur (S, 0.28 ± 0.02%) and manganese (Mn, 19 ± 2 mg/kg) concentrations. Only the N and Mn concentrations were below the optimum for grasses. The grasses grew satisfactorily when irrigated with effluent if it was supplemented with N. Between January and June 2003 the average weight of shoots from the effluent plots was 116% of the weight of shoots from the control plots. Shoot nutrient concentrations were also similar in the 2 regimes at this time. The recycled water supplied 23% of the N required for maximum shoot growth, 80-100% of the P and K, and 500-880% of the S, calcium and magnesium. The use of recycled water represents savings in irrigation and fertiliser costs, and reductions in the discharge of N and P to local waterways. Effluent is currently about 50% of the cost of potable water with a saving of about AU$8000/ha.year for a typical sporting field.
Resumo:
Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.
Resumo:
Large geographic areas can have numerous incipient invasive plant populations that necessitate eradication. However, resources are often deficient to address every infestation. Within the United States, weed lists (either state-level or smaller unit) generally guide the prioritization of eradication of each listed species uniformly across the focus region. This strategy has several limitations that can compromise overall effectiveness, which include spending limited resources on 1) low impact populations, 2) difficult to access populations, or 3) missing high impact populations of low priority species. Therefore, we developed a novel science-based, transparent, analytical ranking tool to prioritize weed populations, instead of species, for eradication and tested it on a group of noxious weeds in California. For outreach purposes, we named the tool WHIPPET (Weed Heuristics: Invasive Population Prioritization for Eradication Tool). Using the Analytic Hierarchy Process that included expert opinion, we developed three major criteria, four sub-criteria, and four sub-sub-criteria, taking into account both species and population characteristics. Subject matter experts weighted and scored these criteria to assess the relative impact, potential spread, and feasibility of eradication (major criteria) for 100 total populations of 19 species. Species-wide population scores indicated that conspecific populations do not necessarily group together in the final ranked output. Thus, priority lists based solely on species-level characteristics are less effective compared to a blended prioritization based on both species attributes and individual population and site parameters. WHIPPET should facilitate a more efficacious decision-making process allocating limited resources to target invasive plant infestations with the greatest predicted impacts to the region under consideration.
Resumo:
Swan’s Lagoon, which is 125 km south-south-west of Townsville, was purchased by the Queensland Government as a beef cattle research station in 1961. It is situated within the seasonally-dry tropical spear grass region of North Queensland. The station was expanded from 80 km2 to 340 km2 by purchase of the adjoining Expedition block in 1978. The first advisory committee formed and initiated research in 1961. The median annual rainfall of 708 mm (28 inches) is highly variable, with over 80% usually falling in December–April. Annual evaporation is 2.03 metres. The 60% of useable area is mostly flat with low fertility duplex soils, of which more than 50% is phosphorus deficient. Natural spear grass-based pastures predominate over the station. Swan’s Lagoon research has contributed to understanding the biology of many aspects of beef production for northern Australia. Research outcomes have provided options to deal with the region’s primary challenges of weaning rates averaging less than 60%, annual growth rates averaging as little as 100 kg, high mortality rates and high management costs. All these relate to the region’s variable and highly seasonal rainfall—challenges that add to insect-borne viruses, ticks, buffalo fly and internal parasites. As well as the vast amount of practical beef production science produced at Swan’s Lagoon, generations of staff have been trained there to support beef producers throughout Queensland and northern Australia to increase their business efficiency. The Queensland Government has provided most of the funds for staffing and operations. Strong beef industry support is reflected in project funding from meat industry levies, managed by Meat and Livestock Australia (MLA) and its predecessors. MLA has consistently provided the majority of operational research funding since the first grant for ‘Studies of management practices, adaption of different breeds and strains to tropical environments, and studies on tick survival and resistance’ in 1962–63. A large number of other agencies and commercial companies have also supported research.
Resumo:
An assessment of marine elapid snakes found 9% of marine elapids are threatened with extinction, and an additional 6% are Near Threatened. A large portion (34%) is Data Deficient. An analysis of distributions revealed the greatest species diversity is found in Southeast Asia and northern Australia. Three of the seven threatened species occur at Ashmore and Hibernia Reefs in the Timor Sea, while the remaining threatened taxa occur in the Philippines, Niue, and Solomon Islands. The majority of Data Deficient species are found in Southeast Asia. Threats to marine snakes include loss of coral reefs and coastal habitat, incidental bycatch in fisheries, as well as fisheries that target snakes for leather. The presence of two Critically Endangered and one Endangered species in the Timor Sea suggests the area is of particular conservation concern. More rigorous, long-term monitoring of populations is needed to evaluate the success of "conservation measures" for marine snake species, provide scientifically based guidance for determining harvest quotas, and to assess the populations of many Data Deficient species.
Resumo:
Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.
Resumo:
Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43 (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6 (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74), with environment (E) responsible for 5–14. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.