7 resultados para Deep space
em eResearch Archive - Queensland Department of Agriculture
Resumo:
A 2000-03 study to improve irrigation efficiency of grassed urban public areas in northern Australia found it would be difficult to grow most species in dry areas without supplementary watering. Sporoboulus virginicus and sand couch, Zoysia macrantha, were relatively drought-tolerant. Managers of sporting fields, parks and gardens could more than halve their current water use by irrigating over a long cycle, irrigating according to seasonal conditions and using grasses with low water use and sound soil management practices that encourage deep rooting. The use of effluent water provides irrigation and fertiliser cost savings and reduced nitrogen and phosphorus discharge to local waterways. Projected savings are $8000/ha/year in water costs for a typical sporting field.
Resumo:
The problem of cannibalism in communally reared crabs can be eliminated by separating the growing crabs into holding compartments. There is currently no information on optimal compartment size for growing crabs individually. 136 second instar crablets (Portunus sanguinolentus) (C2 ca. 7-10 mm carapace width (CW)) were grown for 90 days in 10 different-sized opaque and transparent walled acrylic compartments. The base area for each compartment ranged from small (32 mm × 32 mm) to large (176 mm × 176 mm). Effects of holding space and wall transparency on survival, CW, moult increment, intermoult period and average weekly gain (AWG) were examined. Most crabs reached instars C9-C10 (50-70 mm CW) by the end of experiment. The final survival rate in the smallest compartment was 25% mainly due to moult-related mortality predominantly occurring at the C9 instar. However, crabs in these smaller compartments had earlier produced significantly larger moult increments from instar to instar than those in the larger compartments (P < 0.05). Crabs in the smaller compartments (<65 mm × 65 mm) also showed significantly longer moult periods (P < 0.05). The net result was that AWG in CW was 5.22 mm week-1 for the largest compartment and 5.15 mm week-1 in smallest and did not differ significantly between compartment size groups (P = 0.916). Wall transparency had no impact on survival (P = 0.530) but a slight impact on AWG (P = 0.014). Survival rate was the best indicator of minimum acceptable compartment size (?43 mm × 43 mm) for C10 crablets because below this size death occurred before growth rate was significantly affected. For further growth, it would be necessary to transfer the crablets to larger compartments.
Resumo:
Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant-1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.
Resumo:
The amount of space provided to animals governs important elements of their behaviour and, hence, is critical for their health and welfare. We review the use of allometric principles and equations to estimate the static space requirements of animals when standing and lying, and the space required for animals to feed, drink, stand-up and lie-down. We use the research literature relating to transportation and intensive housing of sheep and cattle to assess the validity of allometric equations for estimating space allowances. We investigated these areas because transportation and intensive housing provide points along a continuum in terms of the duration of confinement, (from hours to months) and spatial requirements are likely to increase with increasing duration of confinement, as animals will need to perform a greater behavioural repertoire for long-term survival, health and welfare. We find that, although there are theoretical reasons why allometric relationships to space allowances may vary slightly for different classes of stock, space allowances that have been demonstrated to have adverse effects on animal welfare during transportation correlated well with an inability to accommodate standing animals, as estimated from allometry. For intensive housing, we were able to detect a space allowance below which there were adverse effects on welfare. For short duration transportation during which animals remain standing, a space allowance per animal described by the allometric equation: area (m^2) = 0.020W^0.66, where W = liveweight (kg), would appear to be appropriate. Where it is desirable for all animals to lie simultaneously, then a minimum space allowance per animal described by the allometric equation: area (m^2) = 0.027W^0.66 appears to permit this, given that animals in a group time-share space. However, there are insufficient data to determine whether this allowance onboard a vehicle/vessel would enable animals to move and access food and water with ease. In intensive housing systems, a minimum space allowance per animal described by the allometric equation: area (m^2) = 0.033W^0.66 appears to be the threshold below which there are adverse effects on welfare. These suggested space allowances require verification with a range of species under different thermal conditions and, for transportation, under different conditions of vehicular/vessel stability. The minimum length of trough per animal (L in m) required for feeding and drinking can be determined from L = 0.064W^0.33, with the number of animals required to feed/drink simultaneously taken into account, together with any requirement to minimise competition. This also requires verification with a range of species. We conclude that allometric relationships are an appropriate basis for the formulation of space allowances for livestock.
Resumo:
Proper management of marine fisheries requires an understanding of the spatial and temporal dynamics of marine populations, which can be obtained from genetic data. While numerous fisheries species have been surveyed for spatial genetic patterns, temporally sampled genetic data is not available for many species. We present a phylogeographic survey of the king threadfin Polydactylus macrochir across its species range in northern Australia and at a temporal scale of 1 and 10 yr. Spatially, the overall AMOVA fixation index was Omega(st) = 0.306 (F-st' = 0.838), p < 0.0001 and isolation by distance was strong and significant (r(2) = 0.45, p < 0.001). Temporally, genetic patterns were stable at a time scale of 10 yr. However, this did not hold true for samples from the eastern Gulf of Carpentaria, where populations showed a greater degree of temporal instability and lacked spatial genetic structure. Temporal but not spatial genetic structure in the Gulf indicates demographic interdependence but also indicates that fishing pressure may be high in this area. Generally, genetic patterns were similar to another co-distributed threadfin species Eleutheronema tetradactylum, which is ecologically similar. However, the historical demography of both species, evaluated herein, differed, with populations of P. macrochir being much younger. The data are consistent with an acute population bottleneck at the last glacio-eustatic low in sea level and indicate that the king threadfin may be sensitive to habitat disturbances.
Resumo:
Water availability is a major limiting factor for wheat (Triticum aestivum L.) in rain-fed agricultural systems worldwide. Root architecture has important functional implications for the timing and extent of soil water extraction, yet selection for root traits in wheat breeding programs has been largely limited due to the lack of suitable phenotyping methods. The aim of this research was to develop a low-cost high-throughput phenotyping method to facilitate selection for desirable root traits. We developed a method to assess ‘seminal root angle’ and ‘seminal root number’ in seedlings – two proxy traits associated to root architecture of mature wheat plants (1). The method involves measuring the angle between the first pair of seminal roots and the number of roots of wheat seedlings grown in transparent pots (Figure 1). Images captured at 5 to 10 days after sowing are analyzed to calculate seminal root angle and number. Performing this technique under “speed breeding” conditions (plants grown at a density of 600 plants / m2, under controlled temperature and constant light) allows the selection based on the desired root traits of up to 5 consecutive generations within 12 months. Alternatively, when focusing only on germplasm screening, up to 52 successive phenotypic assays can be conducted within 12 months. This approach has been shown to be highly reproducible, it requires little resource (time, space, and labour) and can be used to rapidly enrich breeding populations with desirable alleles for narrow root angle and a high number of seminal roots to indirectly target the selection of deeper root system with higher branching at depth. Such root characteristics are highly desirable in wheat to cope with the climate model projections, especially in summer rainfall dominant regions including some Australian, Indian, South American and African cropping regions, where winter crops mainly rely on deep stored water.
Resumo:
Two field experiments were established in central Queensland at Capella and Gindie to investigate the immediate and then residual benefit of deep placed (20 cm) nutrients in this opportunity cropping system. The field sites had factorial combinations of P (40 kg P/ha), K (200 kg K/ha) and S (40 kg S/ha) and all plots received 100 kg N/ha. No further K or S fertilizers were added during the experiment but some crops had starter P. The Capella site was sown to chickpea in 2012, wheat in 2013 and then chickpea in 2014. The Gindie site was sown to sorghum in 2011/12, chickpea in 2013 and sorghum in early 2015. There were responses to P alone in the first two crops at each site and there were K responses in half the six site years. In year 1 (a good year) both sites showed a 20% grain yield response to only to deep P. In year 2 (much drier) the effects of deep P were still evident at both sites and the effects of K were clearly evident at Gindie. There was a suggestion of an additive P+K effect at Capella and a 50% increase for P+K at Gindie. Year 3 was dry and chickpeas at Capella showed a larger response to P+K but the sorghum at Gindie only responded to deep K. These results indicate that responses to deep placed P and K are durable over an opportunity cropping system, and meeting both requirements is important to achieve yield responses.