3 resultados para DOT
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The influence of a once only administration of a metabolite of vitamin D3 (HY [middle dot] D(R)-25-hydroxy vitamin D3) on myofibrillar meat tenderness in Australian Brahman cattle was studied. Ninety-six Brahman steers of three phenotypes (Indo-Brazil, US and US/European) and with two previous hormonal growth promotant (HGP) histories (implanted or not implanted with Compudose(R)) were fed a standard feedlot ration for 70 d. Treatment groups of 24 steers were offered daily 10 g/head HY [middle dot] D(R) (125 mg 25-hydroxyvitamin D3) for 6, 4, or 2 d before slaughter. One other group of 24 steers was given the basal diet without HY [middle dot] D(R). Feed lot performance, blood and muscle samples and carcass quality data were collected at slaughter. Calcium, magnesium, potassium, sodium, iron and Vitamin D3 metabolites were measured in plasma and longissimus dorsi muscle. Warner-Bratzler (WB) shear force (peak force, initial yield) and other objective meat quality measurements were made on the longissimus dorsi muscle of each steer after ageing for 1, 7 and 14 d post-mortem at 0-2 [deg]C.There were no significant effects of HY [middle dot] D(R) supplements on average daily gain (ADG, 1.28-1.45 kg/d) over the experimental period. HY [middle dot] D(R) supplements given 6 d prior to slaughter resulted in significantly higher (P (R)) by phenotype/HGP interaction for peak force (P = 0.028), in which Indo-Brazil steers without previous HGP treatment responded positively (increased tenderness) to HY [middle dot] D(R) supplements at 2 d when compared with Indo-Brazil steers previously given HGP. There were no significant effects of treatment on other phenotypes. HY [middle dot] D(R) supplements did not affect muscle or plasma concentrations of calcium, potassium or sodium, but did significantly decrease plasma magnesium and iron concentrations when given 2 d before slaughter. There were no detectable amounts of 25-hydroxyvitamin D3 in the blood or muscle of any cattle at slaughter.
Resumo:
Haemophilus parasuis is the causative agent of Glässer's disease. Up to now 15 serovars of H. parasuis have been identified, with significant differences existing in virulence between serovars. In this study, suppression subtractive hybridization (SSH) was used to identify the genetic difference between Nagasaki (H. parasuis serovar 5 reference strain, highly virulent) and SW114 (H. parasuis serovar 3 reference strain, non-virulent). A total of 191 clones were obtained from the SSH library. Using dot hybridization and PCR, 15 clones were identified containing fragments that were present in the Nagasaki genome while absent in the SW114 genome. Among these 15 fragments, three fragments (ssh1, ssh13, ssh15) encode cell surface-associated components; three fragments (ssh2, ssh5, ssh9) are associated with metabolism and stress response; one fragment (ssh8) is involved in assembly of fimbria and one fragment (ssh6) is a phage phi-105 ORF25-like protein. The remaining seven fragments are hypothetical proteins or unknown. Based on PCR analysis of the 15 serovar reference strains, eight fragments (ssh1, ssh2, ssh3, ssh6, ssh8, ssh10, ssh11 and ssh12) were found in three to five of most virulent serovars (1, 5, 10, 12, 13 and 14), zero to two in three moderately virulent serovars (2, 4 and 15), but absent in the low virulent serovar (8) and non-virulent serovars (3, 6, 7, 9 and 11). In vivo transcription fragments ssh1, ssh2, ssh8 and ssh12 were identified in total RNA samples extracted from experimental infected pig lung by RT-PCR. This study has provided some evidence of genetic differences between H. parasuis strains of different virulence.
Resumo:
The welfare outcomes for Bos indicus cattle (100 heifers and 50 cows) spayed by either the dropped ovary technique (DOT) or ovariectomy via flank laparotomy (FL) were compared with cattle subjected to physical restraint (PR), restraint by electroimmobilization in conjunction with PR (EIM), and PR and mock AI (MAI). Welfare assessment used measures of morbidity, mortality, BW change, and behavior and physiology indicative of pain and stress. One FL heifer died at d 5 from peritonitis. In the 8-h period postprocedures, plasma bound cortisol concentrations of FL, DOT, and EIM cows were not different and were greater (P < 0.05) than PR and MAI. Similarly, FL and DOT heifers had greater (P < 0.05) concentrations than PR and MAI, with EIM intermediate. Creatine kinase and aspartate aminotransferase concentrations were greater (P < 0.05) in FL and EIM heifers compared with the other treatments, with a similar pattern seen in the cows. Haptoglobin concentrations were significantly (P < 0.05) increased in the FL heifers compared with other treatments in the 8- to 24-h and 24- to 96-h periods postprocedures, and in cows were significantly (P < 0.05) increased in the FL and DOT compared with PR in the 24- to 96-h period. Behavioral responses complemented the physiological responses; standing head down was shown by more (P < 0.05) FL cows and heifers to 3 d postprocedures compared with other treatments, although there was no difference between FL and DOT heifers at the end of the day of procedures. At this same time, fewer (P < 0.05) FL and DOT heifers and cows were observed feeding compared with other treatments, although in cows there was no difference between FL, DOT, and EIM. There were no significant differences (P > 0.05) between treatments in BW changes. For both heifers and cows, FL and DOT spaying caused similar levels of acute pain, but FL had longer-lasting adverse impacts on welfare. Electroimmobilization during FL contributed to the pain and stress of the procedure. We conclude that: i) FL and DOT spaying should not be conducted without measures to manage the associated pain and stress; ii) DOT spaying is preferable to FL spaying; iii) spaying heifers is preferable to spaying cows; and iv) electroimmobilization causes pain and stress and should not be routinely used as a method of restraint.