11 resultados para DORSAL-HORN
em eResearch Archive - Queensland Department of Agriculture
Resumo:
We determined the quantity and chemical composition of cuticular hydrocarbons of different strains, sex and age of buffalo flies, Haematobia exigua. The quantity of cuticular hydrocarbons increased from less than 1 µg/fly for newly-emerged flies to over 11 µg/fly in 13 d-old flies. The hydrocarbon chain length varied from C21 to C29, with unbranched alkanes and monounsaturated alkenes the major components. Newly emerged flies produced almost exclusively C27 hydrocarbons. Increasing age was accompanied by the appearance of hydrocarbons with shorter carbon chains and an increase in the proportion of alkenes. 11 Tricosene and 7-tricosene were the most abundant hydrocarbons in mature buffalo flies. Cuticular hydrocarbons of buffalo flies are distinctly different from those of horn flies. The most noticeable differences were in the C23 alkenes, with the major isomers 11- and 7-tricosene in buffalo flies and (Z)-9- and (Z)-5-tricosene in horn flies, respectively. Cuticular hydrocarbon analysis provides a reliable method to differentiate buffalo and horn fly, which are difficult to separate morphologically. The differences in cuticular hydrocarbons also support their recognition as separate species, H. exigua and H. irritans, rather than as subspecies.
Resumo:
Background: The problems of vitamin A deficiency and chronic diseases have emerged in recent years in some countries in the Micronesian region. These problems are associated with the dietary shift towards imported processed foods and lifestyle changes. Research in the Federated States of Micronesia indicates that yellow- and orange-fleshed banana cultivars contain significant levels of provitamin A carotenoids. Objective: To identify further banana cultivars that may be promoted to alleviate vitamin A deficiency among children and women and chronic disease problems among adults. Methods: Ripe fruit of banana cultivars growing in Australia (sourced mostly from a field research collection) were assessed for carotenoid content and flesh color. Ten cultivars with yellow or yellow/orange flesh color (including common cultivars of Southeast Asia and the Pacific Islands) were selected and compared with two cream-fleshed cultivars, including Williams, of the Cavendish group, the most commonly marketed banana worldwide. Carotenoid content was analyzed by high-performance liquid chromatography (HPLC). Flesh color was analyzed by HunterLab colorimetry. Results: The yellow/orange-fleshed Asupina (a Fe'i banana) contained the highest level (1,412 μg/100 g) of trans β-carotene, the most important provitamin A carotenoid, a level more than 20 times higher than that of Williams. All 10 yellow or yellow/orange-fleshed cultivars (Asupina, Kirkirnan, Pisang Raja, Horn Plantain, Pacific Plantain, Kluai Khai Bonng, Wain, Red Dacca, Lakatan, and Sucrier) had significant carotenoid levels, potentially meeting half or all of the estimated vitamin A requirements for a nonpregnant, nonlactating adult woman within normal consumption patterns. All were acceptable for taste and other attributes. The cream-fleshed cultivars had minimal carotenoid levels. There was a positive significant correlation between carotenoid content and deeper yellow/orange coloration indicators. Conclusions: These yellow- or yellow/orange-fleshed carotenoid-rich banana cultivars should be considered for promotion in order to alleviate vitamin A deficiency and chronic disease in susceptible target communities and to provide variety and enjoyment as exotic fruits in both developing and industrialized countries.
Resumo:
The distribution of the river shark Glyphis in northern Australia is extended with new records of occurrence in the Gulf of Carpentaria and a reassessment of historical survey data from Cape York Peninsula. Nine new specimens of Glyphis sp. A were collected in 2005 from the Weipa region on the Queensland coast of the Gulf of Carpentaria. A re-examination of archival records from 1978-86 marine and estuarine fish surveys in the Gulf of Carpentaria and along the northern Queensland East Coast allowed a further nineteen Glyphis specimens to be identified. Combined this gives twenty-eight new records of Glyphis specimens from the coasts of Cape York Peninsula, Queensland. Common habitat characteristics for all captures were turbid, shallow, fast running tidal water in the upper reaches of coastal rivers. The substrate was generally muddy and the rivers lined with mangrove. In all surveys the representation of Glyphis was low, being less than 1% of the total shark captures historically and 0.002 sharks 50 m net hour-1 in Weipa 2005. The size range captured was 1000-1800 mm total length historically and 705-1200 mm total length from Weipa 2005, with none recorded as sexually mature. Diagnostic characteristics of the Weipa specimens, identified as Glyphis sp. A, were: lower jaw teeth protruding and "spear-like"; second dorsal fin greater than half the height of the first dorsal fin; the snout relatively short and fleshy in the lateral view; pectoral fin ventral surface black in colouration; the precaudal vertebral count between 118 and 123; and the total vertebral count between 204 and 209.
Resumo:
The lateral line system allows elasmobranchs to detect hydrodynamic movements in their close surroundings. We examined the distribution of pit organs and lateral line canals in 4 species of sawfish (Anoxypristis cuspidata, Pristis microdon, P. clavata and P. zijsron). Pit organs could only be located in A. cuspidata, which possesses elongated pits that are lined by dermal denticles. In all 4 pristid species, the lateral line canals are well developed and were separated into regions of pored and non-pored canals. In all species the tubules that extend from pored canals form extensive networks. In A. cuspidata, P. microdon and P. clavata, the lateral line canals on both the dorsal and ventral surfaces of the rostrum possess extensively branched and pored tubules. Based on this morphological observation, we hypothesized that these 3 species do not use their rostrum to search in the substrate for prey as previously assumed. Other batoids that possess lateral line canals adapted to perceive stimuli produced by infaunal prey possess non-pored lateral line canals, which also prevent the intrusion of substrate particles. However, this hypothesis remains to be tested behaviourally in pristids. Lateral line canals located between the mouth and the nostrils are non-pored in all 4 species of sawfish. Thus this region is hypothesized to perceive stimuli caused by direct contact with prey before ingestion. Lateral line canals that contain neuromasts are longest in P. microdon, but canals containing neuromasts along the rostrum are longest in A. cuspidata.
Resumo:
The distribution and density of the ampullary electroreceptors in the skin of elasmobranchs are influenced by the phylogeny and ecology of a species. Sensory maps were created for 4 species of pristid sawfish. Their ampullary pores were separated into pore fields based on their innervation and cluster formation. Ventrally, ampullary pores are located in 6 areas (5 in Pristis microdon), covering the rostrum and head to the gills. Dorsally, pores are located in 4 areas (3 in P. microdon), which cover the rostrum, head and may extend slightly onto the pectoral fins. In all species, the highest number of pores is found on the dorsal and ventral sides of the rostrum. The high densities of pores along the rostrum combined with the low densities around the mouth could indicate that sawfish use their rostrum to stun their prey before ingesting it, but this hypothesis remains to be tested. The directions of ampullary canals on the ventral side of the rostrum are species specific. P. microdon possesses the highest number of ampullary pores, which indicates that amongst the study species this species is an electroreception specialist. As such, juvenile P. microdon inhabit low-visibility freshwater habitats.
Resumo:
Data from 9296 calves born to 2078 dams over 9 years across five sites were used to investigate factors associated with calf mortality for tropically adapted breeds (Brahman and Tropical Composite) recorded in extensive production systems, using multivariate logistic regression. The average calf mortality pre-weaning was 9.5% of calves born, varying from 1.5% to 41% across all sites and years. In total, 67% of calves that died did so within a week of their birth, with cause of death most frequently recorded as unknown. The major factors significantly (P < 0.05) associated with mortality for potentially large numbers of calves included the specific production environment represented by site-year, low calf birthweight (more so than high birthweight) and horn status at branding. Almost all calf deaths post-branding (assessed from n = 8348 calves) occurred in calves that were dehorned, totalling 2.1% of dehorned calves and 15.9% of all calf deaths recorded. Breed effects on calf mortality were primarily the result of breed differences in calf birthweight and, to a lesser extent, large teat size of cows; however, differences in other breed characteristics could be important. Twin births and calves assisted at birth had a very high risk of mortality, but <1% of calves were twins and few calves were assisted at birth. Conversely, it could not be established how many calves would have benefitted from assistance at birth. Cow age group and outcome from the previous season were also associated with current calf mortality; maiden or young cows (<4 years old) had increased calf losses overall. More mature cows with a previous outcome of calf loss were also more likely to have another calf loss in the subsequent year, and this should be considered for culling decisions. Closer attention to the management of younger cows is warranted to improve calf survival.
Resumo:
The ocellated angelshark, Squatina tergocellatoides, Chen, 1963 is redescribed from the holotype, which was thought to be lost. Its recent recovery has allowed for a revised description, including new data, and comparison to other Western Pacific squatinids. Squatina tergocellatoides can be distinguished from its congeners by three pairs of prominent large black spots, each with a diameter greater than eye length; two on each pectoral fin at anterior and posterior angles and one on each side near the tail base; another three pairs of lesser defined spots, one large spot on base of each dorsal fin and one located laterally on each side of tail located below first dorsal fin. Ventral surface is uniformly white to cream coloured, and margins of pectoral fins and tail similar in colour to dorsal side. Pectoral fins with angular lateral apices and rounded posterior lobe, pelvic fin tips not reaching origin of first dorsal fin, strongly fringed nasal barbels, small inter-orbital space, head and mouth lengths, broad internarial width and pelvic fin base, a very small pelvic girdle width, and a caudal fin with triangular ventral lobe greater in length than dorsal lobe. Comments on additional specimens are provided, as well as observations on biogeography. A review of western Pacific squatinids is also provided.
Resumo:
Reliable age information is vital for effective fisheries management, yet age determinations are absent for many deepwater sharks as they cannot be aged using traditional methods of growth bands counts. An alternative approach to ageing using near infrared spectroscopy (NIRS) was investigated using dorsal fin spines, vertebrae and fin clips of three species of deepwater sharks. Ages were successfully estimated for the two dogfish, Squalus megalops and Squalus montalbani, and NIRS spectra were correlated with body size in the catshark, Asymbolus pallidus. Correlations between estimated-ages of the dogfish dorsal fin spines and their NIRS spectra were good, with S. megalops R2=0.82 and S. montalbani R2=0.73. NIRS spectra from S. megalops vertebrae and fin clips that have no visible growth bands were correlated with estimated-ages, with R2=0.89 and 0.76, respectively. NIRS has the capacity to non-lethally estimate ages from fin spines and fin clips, and thus could significantly reduce the numbers of sharks that need to be lethally sampled for ageing studies. The detection of ageing materials by NIRS in poorly calcified deepwater shark vertebrae could potentially enable ageing of this group of sharks that are vulnerable to exploitation.
Resumo:
To age sharks, the growth bands in the shark vertebrae (like the rings in a tree) or on the spines in front of each dorsal fin (which only some sharks have) are manually counted using a microscope. This is time-consuming and is only possible on dead animals. NIR spectroscopy is shown to be able to detect age in dorsal fin spines of sharks and hand-held NIR spectroscopy units could potentially be used for ageing of sharks in the field, at sea, using a hand-held unit to scan the fin spine on a live animal.
Resumo:
Mud crabs (Scylla spp.) are intensively caught throughout South-East Asia and support a very substantial commercial, recreational fishing and aquaculture industry. Identification of individual animals is important to improve understanding and management of this species. However, tagging of crustaceans is difficult as they frequently molt and internal tags can pose a hazard to consumers. In this pilot study we tested a new method combining passive integrated transponder tags and t-bar tags externally. 45 giant mud crabs (Scylla serrata) were captured from the wild and kept in tanks for a maximum of 10 months. We inserted tags into the abdomen of 35 giant mud crabs and tested a modified method where the combined t-bar/PIT-tag was inserted into the muscle tissue of the rear leg between the dorsal carapace plate and the top of the abdominal flap. Tagged crabs with the modified method showed 85% tag retention for molting crabs. We tested the same method in the field where 852 individuals were tagged with combined t-bar/PIT-tags of which 82 were recaptured showing 100% tag retention but without any evidence of molting having occurred. The tested method of combined t-bar/PIT-tags in giant mud crabs can further improve monitoring for wild and aquaculture populations and can be deployed widely with low cost.
Resumo:
Mud crabs (Scylla spp.) are intensively caught throughout South-East Asia and support a very substantial commercial, recreational fishing and aquaculture industry. Identification of individual animals is important to improve understanding and management of this species. However, tagging of crustaceans is difficult as they frequently molt and internal tags can pose a hazard to consumers. In this pilot study we tested a new method combining passive integrated transponder tags and t-bar tags externally. 45 giant mud crabs (Scylla serrata) were captured from the wild and kept in tanks for a maximum of 10 months. We inserted tags into the abdomen of 35 giant mud crabs and tested a modified method where the combined t-bar/PIT-tag was inserted into the muscle tissue of the rear leg between the dorsal carapace plate and the top of the abdominal flap. Tagged crabs with the modified method showed 85% tag retention for molting crabs. We tested the same method in the field where 852 individuals were tagged with combined t-bar/PIT-tags of which 82 were recaptured showing 100% tag retention but without any evidence of molting having occurred. The tested method of combined t-bar/PIT-tags in giant mud crabs can further improve monitoring for wild and aquaculture populations and can be deployed widely with low cost.