27 resultados para DNA Fragmentation
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The primary purpose of spermatozoa is to deliver the paternal DNA to the oocyte at fertilization. During the complex events of fertilization, if the spermatozoon penetrating the oocyte contains compromised or damaged sperm chromatin, the subsequent progression of embryogenesis and foetal development may be affected. Variation in sperm DNA damage and protamine content in ejaculated spermatozoa was reported in the cattle, with potential consequences to bull fertility. Protamines are sperm-specific nuclear proteins that are essential to packaging of the condensed paternal genome in spermatozoa. Sperm DNA damage is thought to be repaired during the process of protamination. This study investigates the potential correlation between sperm protamine content, sperm DNA damage and the subsequent relationships between sperm chromatin and commonly measured reproductive phenotypes. Bos indicus sperm samples (n = 133) were assessed by two flow cytometric methods: the sperm chromatin structure assay (SCSA) and an optimized sperm protamine deficiency assay (SPDA). To verify the SPDA assay for bovine sperm protamine content, samples collected from testis, caput and cauda epididymidis were analyzed. As expected, mature spermatozoa in the cauda epididymidis had higher protamine content when compared with sperm samples from testis and caput epididymidis (p < 0.01). The DNA fragmentation index (DFI), determined by SCSA, was positively correlated (r = 0.33 ± 0.08, p < 0.05) with the percentage of spermatozoa that showed low protamine content using SPDA. Also, DFI was negatively correlated (r = -0.21 ± 0.09, p < 0.05) with the percentage of spermatozoa with high protamine content. Larger scrotal circumference contributes to higher sperm protamine content and lower content of sperm DNA damage (p < 0.05). In conclusion, sperm protamine content and sperm DNA damage are closely associated. Protamine deficiency is likely to be one of the contributing factors to DNA instability and damage, which can affect bull fertility. © 2014 American Society of Andrology and European Academy of Andrology.
Resumo:
Sperm chromatin status was assessed in 565 Zebu and Zebu crossbred beef bulls in extensive tropical environments using the sperm chromatin structure assay (SCSA). The SCSA involved exposure of sperm to acid hydrolysis for 0.5 or 5.0 minutes, followed by flow cytometry to ascertain relative amounts of double-stranded (normal) and single-stranded (denatured) DNA, which was used to generate a DNA fragmentation index (%DFI). With conventional SCSA (0.5-minute SCSA), 513 bulls (91%) had <15 %DFI, 24 bulls (4%) had 15 to 27 %DFI, and 28 bulls (5%) had >27 %DFI. In 5.0-minute SCSA, 432 bulls (76%) had <15 %DFI, 68 bulls (12%) had 15 to 27 %DFI and 65 bulls (12%) had >27 %DFI. For most bulls, the SCSA was repeatable on two to four occasions; however, because most bulls had <15 %DFI, repeatability of the SCSA will need to be determined in a larger number of bulls in the 15 to 27 %DFI and >27 %DFI categories. The %DFI was negatively correlated with several bull semen parameters and the strongest negative correlation was with normal sperm. There was a strong positive correlation between %DFI and sperm head abnormalities. Based on these findings, most Zebu beef bulls in extensive tropical environments had relatively stable sperm chromatin. Based on the apparent negative correlations with conventional semen parameters, we inferred that the SCSA measured a unique feature of sperm quality, which has also been suggested for other species. Further studies on the relationships between sperm chromatin stability and fertility are required in beef bulls before chromatin status can be used as an additional predictor of the siring capacity of individual bulls in extensive multiple-sire herds. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Botryosphaeria rhodina (anamorph Lasiodiplodia theobromae) is a common endophyte and opportunistic pathogen on more than 500 tree species in the tropics and subtropics. During routine disease surveys of plantations in Australia and Venezuela several isolates differing from L. theobromae were identified and subsequently characterized based upon morphology and ITS and EF1-a nucleotide sequences. These isolates grouped into three strongly supported clades related to but different from the known taxa, B. rhodina and L. gonubiensis, These have been described here as three new species L. venezuelensis sp. nov., L. crassispora sp. nov. and L. rubropurpurea sp. nov. The three could be distinguished easily from each other and the two described species of Lasiodiplodia, thus confirming phylogenetic separations. Furthermore all five Lasiodiplodia spp. now recognized separated from Diplodia spp. and Dothiorella spp. with 100% bootstrap support.
Resumo:
Aims: The aim of this work was to develop a rapid molecular test for the detection of the Chlamydiaceae family, irrespective of the species or animal host. Methods and Results: The method described herein is a polymerase chain reaction targeting the 16S rRNA gene of the Chlamydiaceae family, and the results demonstrate that the test reacts with five reference Chlamydiaceae but none of the 19 other bacterial species or five uninfected animal tissues tested. The results also indicate the enhanced sensitivity of this test when compared with conventional culture or serology techniques. This is demonstrated through parallel testing of six real clinical veterinary cases and confirmatory DNA sequence analysis. Conclusions, Significance and Impact of the Study: This test can be used by veterinary diagnostic laboratories for rapid detection of Chlamydiaceae in veterinary specimens, with no restriction of chlamydial species or animal host. The test does not differentiate chlamydial species, and if required, speciation must be carried out retrospectively using alternate methods. However, for the purpose of prescribing therapy for chlamydiosis, this test would be an invaluable laboratory tool.
Resumo:
The reliability of ants as bioindicators of ecosystem condition is dependent on the consistency of their response to localised habitat characteristics, which may be modified by larger-scale effects of habitat fragmentation and loss. We assessed the relative contribution of habitat fragmentation, habitat loss and within-patch habitat characteristics in determining ant assemblages in semi-arid woodland in Queensland, Australia. Species and functional group abundance were recorded using pitfall traps across 20 woodland patches in landscapes that exhibited a range of fragmentation states. Of fragmentation measures, changes in patch area and patch edge contrast exerted the greatest influence on species assemblages, after accounting for differences in habitat loss. However, 35% of fragmentation effects on species were confounded by the effects of habitat characteristics and habitat loss. Within-patch habitat characteristics explained more than twice the amount of species variation attributable to fragmentation and four times the variation explained by habitat loss. The study indicates that within-patch habitat characteristics are the predominant drivers of ant composition. We suggest that caution should be exercised in interpreting the independent effects of habitat fragmentation and loss on ant assemblages without jointly considering localised habitat attributes and associated joint effects.
Resumo:
Small juveniles of the nine species of scombrids in Australian waters are morphologically similar to one another and, consequently, difficult to identify to species level. We show that the sequence of the mitochondrial DNA cytochrome b gene region is a powerful tool for identification of these young fish. Using this method, we identified 50 juvenile scombrids collected from Exmouth Bay, Western Australia. Six species of scombrids were apparent in this sample of fish: narrow-barred Spanish mackerel (Scomberomorus commerson), Indian mackerel (Rastrelliger kanagurta), frigate tuna (Auxis thazard), bullet tuna (Auxis rochei), leaping bonito (Cybiosarda elegans), and kawakawa (Euthynnus affinis). The presence of Indian mackerel, frigate tuna, leaping bonito, and kawakawa is the first indication that coastal waters may be an important spawning habitat for these species, although offshore spawning may also occur. The occurrence of small juvenile S. commerson was predicted from the known spawning patterns of that species, but other mackerel species (Scomberomorus munroi, Scomberomorus queenslandicus, Scomberomorus semifasiciatus) likely to be spawning during the sampling period were not detected among the 50 small juveniles analyzed here.
Resumo:
Taro (Colocasia esculenta) accessions were collected from 15 provinces of Papua New Guinea (PNG). The collection, totalling 859 accessions was collated for characterization and a core collection of 81 accessions (10%) was established on the basis of characterization data generated on 30 agro-morphological descriptors, and DNA fingerprinting using seven SSR primers. The selection of accessions was based on cluster analysis of the morphological data enabling initial selection of 20% accessions. The 20% sample was then reduced and rationalized to 10% based on molecular data generated by SSR primers. This represents the first national core collection of any species established in PNG based on molecular markers. The core has been integrated with core from other Pacific Island countries, contributing to a Pacific regional core collection, which is conserved in vitro in the South Pacific Regional Germplasm Centre at Fiji. The core collection is a valuable resource for food security of the South Pacific region and is currently being utilized by the breeding programmes of small Pacific Island countries to broaden the genetic base of the crop.
Resumo:
To maximize the information commonly collected from otoliths, the effect of DNA extraction on the estimation of age with otoliths was evaluated by comparing sagittal otolith samples from common coral trout (Plectropomus leopardus) for clarity and ageing discrepancies in DNA-extracted and untreated control otoliths. The DNA extraction process had no significant effect, indicating that archived otoliths can be used as a source of DNA while retaining their utility for age estimation.
Resumo:
We have mapped and identified DNA markers linked to morphology, yield, and yield components of lucerne, using a backcross population derived from winter-active parents. The high-yielding and recurrent parent, D, produced individual markers that accounted for up to 18% of total yield over 6 harvests, at Gatton, south-eastern Queensland. The same marker, AC/TT8, was consistently identified at each individual harvest, and in individual harvests accounted for up to 26% of the phenotypic variation for yield. This marker was located in linkage group 2 of the D map, and several other markers positively associated with yield were consistently identified in this linkage group. Similarly, markers negatively associated with yield were consistently identified in the W116 map, W116 being the low-yielding parent. Highly significant positive correlations were observed between total yield and yield for harvests 1-6, and between total yield and stem length, tiller number, leaf yield/plant, leaf yield/5 stems, stem yield/plant, and stem yield/5 stems. Highly significant QTL were located for all these characters as well as for leaf shape and pubescence.
Resumo:
Genetic variation among 29 isolates of Fusarium oxysporum f.sp. zingiberi (Foz) collected from diseased ginger rhizome in production regions throughout Queensland was analysed using DNA amplification fingerprinting (DAF). Eight isolates of other Fusarium species and/or formae speciales were included for comparative analysis. Within the Foz isolates, three haplotypes were identified based on 17 polymorphic bands generated with five primers. Two groups showed very little genetic variation (98.6% similarity), whereas the third single isolate was quite distinct in terms of its molecular profile (77.2% similarity). Genetic similarity among the Fusarium solani, F. oxysporum f.sp. lycopersici and F. oxysporum f.sp. cubense races 1, 3 and 4 isolates compared well with the published literature.
Resumo:
RFLP markers are currently the most appropriate marker system for the identification of uncharacterised polymorphism at the interspecific and intergeneric level. Given the benefits of a PCR-based marker system and the availability of sequence information for many Solanaceous cDNA clones, it is now possible to target conserved fragments, for primer development, that flank sequences possessing interspecific polymorphism. The potential outcome is the development of a suite of markers that amplify widely in Solanaceae. Temperature gradient gel electrophoresis (TGGE) is a relatively inexpensive gel-based system that is suitable for the detection of most single-base changes. TGGE can be used to screen for both known and unknown polymorphisms, and has been assessed here, for the development of PCR-based markers that are useful for the detection of interspecific variation within Solanaceae. Fifteen markers are presented where differences between Lycopersicon esculentum and L. pennellii have been detected by TGGE. The markers were assessed on a wider selection of plant species and found to be potentially useful for the identification of interspecific and intergeneric polymorphism in Solanaceous plants.
Resumo:
Based on morphological features alone, there is considerable difficulty in identifying the 5 most economically damaging weed species of Sporobolus [viz. S. pyramidalis P. Beauv., S. natalensis (Steud.) Dur and Schinz, S. fertilis (Steud.) Clayton, S. africanus (Poir.) Robyns and Tourney, and S. jacquemontii Kunth.] found in Australia. A polymerase chain reaction (PCR)-based random amplified polymorphic DNA (RAPD) technique was used to create a series of genetic markers that could positively identify the 5 major weeds from the other less damaging weedy and native Sporobolus species. In the initial RAPD profiling experiment, using arbitrarily selected primers and involving 12 species of Sporobolus, 12 genetic markers were found that, when used in combination, could consistently identify the 5 weedy species from all others. Of these 12 markers, the most diagnostic were UBC51490 for S. pyramidalis and S. natalensis; UBC43310.2000.2100 for S. fertilis and S. africanus; and ORA20850 and UBC43470 for S. jacquemontii. Species-specific markers could be found only for S. jacquemontii. In an effort to understand why there was difficulty in obtaining species-specific markers for some of the weedy species, a RAPD data matrix was created using 40 RAPD products. These 40 products amplified by 6 random primers from 45 individuals belonging to 12 species, were then subjected to numerical taxonomy and multivariate system (NTSYS pc version 1.70) analysis. The RAPD similarity matrix generated from the analysis indicated that S. pyramidalis was genetically more similar to S. natalensis than to other species of the 'S. indicus complex'. Similarly, S. jacquemontii was more similar to S. pyramidalis, and S. fertilis was more similar to S. africanus than to other species of the complex. Sporobolus pyramidalis, S. jacquemontii, S. africanus, and S. creber exhibited a low within-species genetic diversity, whereas high genetic diversity was observed within S. natalensis, S. fertilis, S. sessilis, S. elongates, and S. laxus. Cluster analysis placed all of the introduced species (major and minor weedy species) into one major cluster, with S. pyramidalis and S. natalensis in one distinct subcluster and S. fertilis and S. africanus in another. The native species formed separate clusters in the phenograms. The close genetic similarity of S. pyramidalis to S. natalensis, and S. fertilis to S. africanus may explain the difficulty in obtaining RAPD species-specific markers. The importance of these results will be within the Australian dairy and beef industries and will aid in the development of integrated management strategy for these weeds.
Resumo:
The river sharks (genus Glyphis) are a small group of poorly known sharks occurring in tropical rivers and estuarine waters across northern Australia, south-east Asia and the subcontinent. The taxonomy of the genus has long been unclear due to very few individuals having been caught and examined, resulting in a paucity of data regarding their distribution, biology and ecology. Only recently has attention focussed on the two Australian species, G. glyphis and G. garricki. This study is a result of a rare opportunity to collate the few samples that have been collected from these species and the bull shark Carcharhinus leucas, which shares an overlapping range. These samples were analysed using the DNA barcoding approach (cox1 mitochondrial gene), compared with six other species of carcharhinids and evaluated in light of the current taxonomic classification. Nine species-specific nucleotide differences were found between G. glyphis and G. garricki and no intra-specific variation provides strong support for the separation into distinct species. Significant differences were also observed at the inter-generic level, with Glyphis forming a distinct clade from Carcharhinus. This study provides the basis for future molecular studies required to better address conservation issues confronting G. glyphis and G. garricki in Australia.
Resumo:
A new test for pathogenic Leptospira isolates, based on RAPD-PCR and high-resolution melt (HRM) analysis (which measures the melting temperature of amplicons in real time, using a fluorescent DNA-binding dye), has recently been developed. A characteristic profile of the amplicons can be used to define serovars or detect genotypes. Ten serovars, of leptospires from the species Leptospira interrogans (serovars Australis, Robinsoni, Hardjo, Pomona, Zanoni, Copenhageni and Szwajizak), L. borgpetersenii (serovar Arborea), L. kirschneri (serovar Cynopteri) and L. weilii (serovar Celledoni), were typed against 13 previously published RAPD primers, using a real-time cycler (the Corbett Life Science RotorGene 6000) and the optimised reagents from a commercial kit (Quantace SensiMix). RAPD-HRM at specific temperatures generated defining amplicon melt profiles for each of the tested serovars. These profiles were evaluated as difference-curve graphs generated using the RotorGene software package, with a cut-off of at least 8 'U' (plus or minus). The results demonstrated that RAPD-HRM can be used to measure serovar diversity and establish identity, with a high degree of stability. The characterisation of Leptospira serotypes using a DNA-based methodology is now possible. As an objective and relatively inexpensive and rapid method of serovar identification, at least for cultured isolates, RAPD-HRM assays show convincing potentia.
Resumo:
Thaumastocoris peregrinus is a recently introduced invertebrate pest of non-native Eucalyptus plantations in the Southern Hemisphere. It was first reported from South Africa in 2003 and in Argentina in 2005. Since then, populations have grown explosively and it has attained an almost ubiquitous distribution over several regions in South Africa on 26 Eucalyptus species. Here we address three key questions regarding this invasion, namely whether only one species has been introduced, whether there were single or multiple introductions into South Africa and South America and what the source of the introduction might have been. To answer these questions, bar-coding using mitochondrial DNA (COI) sequence diversity was used to characterise the populations of this insect from Australia, Argentina, Brazil, South Africa and Uruguay. Analyses revealed three cryptic species in Australia, of which only T. peregrinus is represented in South Africa and South America. Thaumastocoris peregrinus populations contained eight haplotypes, with a pairwise nucleotide distance of 0.2-0.9% from seventeen locations in Australia. Three of these haplotypes are shared with populations in South America and South Africa, but the latter regions do not share haplotypes. These data, together with the current distribution of the haplotypes and the known direction of original spread in these regions, suggest that at least three distinct introductions of the insect occurred in South Africa and South America before 2005. The two most common haplotypes in Sydney, one of which was also found in Brisbane, are shared with the non-native regions. Sydney populations of T. peregrinus, which have regularly reached outbreak levels in recent years, might thus have served as source of these three distinct introductions into other regions of the Southern Hemisphere.